Skip to main content

Ovarian Teratocarcinogenesis: A Consequence of Abnormal Regulation of Meiosis

  • Chapter
Ovulation

Part of the book series: Proceedings in the Serono Symposia USA Series ((SERONOSYMP))

  • 134 Accesses

Abstract

Abnormalities in the regulation of meiosis can lead to several disastrous outcomes, including infertility, birth defects, and teratocarcinogensis. This chapter will discuss abnormalities in oocyte meiosis that lead to the formation of spontaneous ovarian teratomas. Emphasis is placed on ovarian teratocarcinogenesis in strain LT mice, and related strains. The word teratoma is derived from the Greek teras, meaning monster, because the tumors are composed of a variety of differentiated cell and tissue types including skin, glandular tissue, bone, muscle, neural tissue, and even hair and teeth, which is assembled into a highly disorganized, sometimes bizarre, mass. Ovarian teratomas in both mice and humans often arise from oocytes that undergo parthenogenetic embryo development without ovulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peterson WE Malignant degeneration of benign cystic teratomas of the ovary. A Collective review of the literature. Obstet Gynecol Surg 1957; 12:793–830.

    Article  CAS  Google Scholar 

  2. Abell MR. The nature and classification of ovarian neoplasaams. Can Med Assoc J 1966;94:1102–24.

    PubMed  CAS  Google Scholar 

  3. Norris HJ, Jensen RD. Relative frequency of ovarian neoplasms in children and adolescents. Cancer 1972;30:713–19.

    Article  PubMed  CAS  Google Scholar 

  4. Stevens LC, Varnum DS. The development of teratomas from parthenogenetically activated ovarian mouse eggs. Dev Biol 1974;37:369–80.

    Article  PubMed  CAS  Google Scholar 

  5. Fafalios MK, Olander EA, Melhem MF, Chaillet JR. Ovarian teratomas associated with the insertion of an imprinted transgene. Mamm Genome 1996;7:188–93.

    Article  PubMed  CAS  Google Scholar 

  6. Hsu SY, Lai RJM, Finegold M, Hsueh AJW. Targeted overexpression of bcl-2 in ovaries of tranagenic mice leads to decreased follicle apoptosis, enhanced folliculogenesis, and increased germ cell tumorigenesis. Endocrinology 1996; 137: 4837–43.

    Article  PubMed  CAS  Google Scholar 

  7. Hashimoto N, Watanabe N, Furuta Y, Tamemoto H, Sagata N, Yokoyama M, et al. Parthenogenetic activation of oocytes in c-mos deficient mice. Nature 1994;370:68–71.

    Article  PubMed  CAS  Google Scholar 

  8. Colledge WH, Carlton MBL, Udy GB, Evans MJ. Disruption of c-mos cause parthe-nogenetic development of unfertilized mouse eggs. Nature 1994;370:65–68.

    Article  PubMed  CAS  Google Scholar 

  9. Hirao Y, Eppig JJ. Parthenogenetic development of Mos-deficient mouse oocytes. Mol ReprodDev 1997;48:391–96.

    Article  CAS  Google Scholar 

  10. Eippig JJ, Wigglesworth K, Varnum DS, Nadeau JH. Genetic regulation of traits essential for spontaneous ovarian teratocarcinogenesis in strain LT/Sv mice: aberrant meiotic cell cycle, oocyte activation, and partheogenetic development. Cancer Res 1996;56:5047–54.

    Google Scholar 

  11. Malezewski M, Yanagimachi R. Spontaneous and sperm-induced activation of oocytes in LT/Sv strin mice. Dev Growth Differ 1995;37:679–85.

    Article  Google Scholar 

  12. Verlhac MH, Kubiak JZ, Weber M, Geraud G, Colledge WH, Evans MJ, et al. Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 1996; 122:815–22.

    PubMed  CAS  Google Scholar 

  13. Stevens LC. Teratocarcinogenesis and spontaneous parthenogenesis in mice. In: Market CL, Papaconstantinou J, eds. The developmental biology of reproduction. New York: Academic Press; 1975:93–106.

    Google Scholar 

  14. Eppig JJ, Kozak LP, Eicher EM, Stevens LC. Ovarian tertomas in mice are derived from oocytes that have completed the first meiotic division. Nature 1977; 269:517–18.

    Article  PubMed  CAS  Google Scholar 

  15. Kaufman MH, Howlett SK. The ovulation and activation of primary and secondary ooctes in LT/Sv strain mice. Gamete Res 1986; 14:255–64.

    Article  Google Scholar 

  16. West JD, Webb S, Kaufman MH. Inheritance of a meiotic abnormality that causes the ovulation of primary oocytes and the production of digynic triploid mice. Gen Res 1993;62:183–93.

    Article  CAS  Google Scholar 

  17. Eppig JJ, Wigglesworth K. Atypical maturation of oocytes of strain I/LnJ mice. Hum Reprod 1994;9:1136–42.

    PubMed  CAS  Google Scholar 

  18. Eppig JJ. Intercommunication between mammalian oocytes and companion somatic cells. BioEssays 1991; 13:569–74.

    Article  PubMed  CAS  Google Scholar 

  19. Eppig JJ. Regulation of mammalian oocyte maturation. In: Adashi EY, Leung PCK, eds. The ovary. New York: Raven Press; 1993:185–208.

    Google Scholar 

  20. Norbury C, Nurse P. Animal cell cycles and their control. Ann Rev Biochem 1992;61:441–70

    Article  PubMed  CAS  Google Scholar 

  21. Jacobs T. Control of the cell cycle. Dev Biol 1992;153:1–15.

    Article  PubMed  CAS  Google Scholar 

  22. Murray A. Cyclin ubiquitination: the destructive end of mitosis. Cell 1995;81:149–52.

    Article  PubMed  CAS  Google Scholar 

  23. Hashimoto H, Kishimoto T. Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev Biol 1988;126:242–52.

    Article  PubMed  CAS  Google Scholar 

  24. Choi T, Aoki F, Mori M, Yamashita M, Nagahama Y, Kohomoto K. Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos. Development 1991;113:789–95.

    PubMed  CAS  Google Scholar 

  25. Hampl A, Eppig JJ. Translational regulation of the gradual increase in histone H1 kinase activity in maturing mouse oocytes. Mol Reprod Dev 1994;40:9–15.

    Article  Google Scholar 

  26. Hampl A, Eppig JJ. Analysis of the mechanism(s) of metaphase I arrest in maturing mouse oocytes. Development 1995; 121:925–33.

    PubMed  CAS  Google Scholar 

  27. Goldman DS, Kiessling AA, Millette CF, Cooper GM. Expression of c-mos RNA in germ cells of male and female mice. Proc Nat Acad Sci USA 1987;84:4509–13.

    Article  PubMed  CAS  Google Scholar 

  28. Keshet E, Rosenberg MP, Mercer JA, Propst F, Vande Woude GF, Jenkins NA, et al. Developmental regulation of ovarian-specific Mos expression. Oncogene 1988;2: 235–40.

    PubMed  CAS  Google Scholar 

  29. Mutter GL, Wolgemuth DJ. Distinct developmental patterns of c-mos protooncogene expression in female and male mouse germ cells. Proc Nat Acad Sci USA 1987;84: 5301–5.

    Article  PubMed  CAS  Google Scholar 

  30. Gebauder F, Xu WH, Cooper GM, Richter JD. Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J 1994;13:5712–20.

    Google Scholar 

  31. Paules RS, Buccione R, Moschel RC, Vande Woude GF, Eppig JJ. Mouse Mos protooncogene product is present and functions during oogenesis. Proc Natl Acad Sci USA 1989;86:5395–99.

    Article  PubMed  CAS  Google Scholar 

  32. Sagata N, Daar I, Oskarsson M, Showalter SD, Vande Woude GF. The product of the mos proto-oncogene as a candidate “initiator” for oocyte maturation. Science 1989;245:643–46.

    Article  PubMed  CAS  Google Scholar 

  33. Yew N, Mellini ML, Vande Woude GF. Meiotic initiation by the mos protein in Xeno-pus. Nature 1992;355:649–52.

    Article  PubMed  CAS  Google Scholar 

  34. Araki K, Naito K, Haraguchi S, Suzuki R, Yokoyama M, Inoue M, et al. Meiotic abnormalities of c-mos knockout mouse oocytes: activation after first meiosis or entrance into third meiotic metaphase. Biol Reprod 1996;55:1315–24.

    Article  PubMed  CAS  Google Scholar 

  35. Choi TS, Fukasawa K, Zhou RP, Tessarollo L, Borror K, Resau J, et al. The Mos/ mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes. Proc Natl Acad Sci USA 1996;93:7032–35.

    Article  PubMed  CAS  Google Scholar 

  36. MacDowell EC. “Light”—A new mouse color. J Hered 1950;41:35–36.

    PubMed  CAS  Google Scholar 

  37. Johnson R, Jackson IJ. Light is dominant mouse mutation resulting in premature cell death. Nat Gen 1992;1:226–29.

    Article  CAS  Google Scholar 

  38. Hirao Y, Eppig JJ. Analysis of the mechanism(s) of metaphase I arrest in strain LT mouse oocytes: participation of MOS. Development 1997; 124:5107–13.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eppig, J.J., Hampl, A., Hirao, Y. (2000). Ovarian Teratocarcinogenesis: A Consequence of Abnormal Regulation of Meiosis. In: Adashi, E.Y. (eds) Ovulation. Proceedings in the Serono Symposia USA Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21508-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21508-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-0521-5

  • Online ISBN: 978-0-387-21508-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics