Skip to main content

Endocrine Pancreas

  • Chapter
  • First Online:
Principles of Diabetes Mellitus

Abstract

The endocrine pancreas is composed of the islets of Langerhans, which comprise approximately two million clusters of cells dispersed within the acinar tissue of the exocrine pancreas. Whereas the exocrine pancreas is responsible for secreting digestive enzymes for nutrient absorption, the endocrine pancreas regulates nutrient homeostasis and metabolism, including uptake, storage, and release of metabolic fuels. In adults, the islets constitute between 1 and 2% of pancreatic mass. At least four cell types have been identified in the islets: α-cells, β-cells, δ-cells, and pancreatic polypeptide (PP) cells. β-Cells constitute the majority of islet cells and are concentrated in the anterior head, body, and tail of the pancreas.

*Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wierup N, Svensson H, Mulder H, Sundler F. The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept. 2002;107:63–69.

    Article  PubMed  CAS  Google Scholar 

  2. Wierup N, Yang S, McEvilly RJ, Mulder H, Sundler F. Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells. J Histochem Cytochem. 2004;52:301–310.

    Article  PubMed  CAS  Google Scholar 

  3. Johansson B-L, Sjöberg S, Wahren J. The influence of human C-peptide on renal function and glucose utilization in type 1 (insulin-dependent) diabetic patients. Diabetologia. 1992;35:121 –128.

    Article  PubMed  CAS  Google Scholar 

  4. Cotter M, Cameron N. The effects of insulin C-peptide on nerve function in diabetic rats are blocked by nitric oxide synthase inhibition (Abstract). Diabetologia. 2001;44(1):A46.

    Google Scholar 

  5. Ekberg K, Johansson B-L, Wahren J. Stimulation of blood flow by C-peptide in patients with type 1 diabetes. Diabetologia. 2001;44(1):A323.

    Google Scholar 

  6. Fernqvist-Forbes E, Johansson B-L, Eriksson M. Effects of C-peptide on forearm blood flow and brachial artery dilatation in patients with type 1 diabetes. Acta Physiol Scand. 2001;172:159 –165.

    Article  PubMed  CAS  Google Scholar 

  7. Forst T, Kunt T, Pohlmann T, Goitom K, Engelbach M, Beyer J, Pfützner A. Biological activity of C-peptide on the skin microcirculation in patients with insulin dependent diabetes mellitus. J Clin Invest. 1998;101:2036 –2041.

    Article  PubMed  CAS  Google Scholar 

  8. Hansen A, Johansson B, Wahren J, von Bibra H. C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. Diabetes. 2002;51:3077–3082.

    Article  PubMed  CAS  Google Scholar 

  9. Marques R, Fontaine M, Rogers J. C-peptide: much more than a byproduct of insulin biosynthesis. Pancreas. 2004;29(3):231–238.

    Article  PubMed  CAS  Google Scholar 

  10. Kamiya H, Zhang W, Ekberg K, Wahren J, Sima A. C-peptide reverses nociceptive neuropathy in type 1 diabetes. Diabetes. 2006;55:3581–3587.

    Article  PubMed  CAS  Google Scholar 

  11. Samnegård B, Jacobson S, Jaremko G, et al. C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol Dial Transplant. 2005;20(3):532–538.

    Article  PubMed  Google Scholar 

  12. Ekberg K, Brismar T, Johansson B-L, Jonsson B, Lindström P, Wahren J. Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes. 2003;52(2):536–541.

    Article  PubMed  CAS  Google Scholar 

  13. Ekberg K, Brismar T, Johansson B-L, et al. C-peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care. 2007;30(1):71–76.

    Article  PubMed  CAS  Google Scholar 

  14. Carroll R, Hammer R, Chan S, et al. A mutant human proinsulin is secreted from islets of Langerhans in increased amounts via an unregulated pathway. Proc Natl Acad Sci USA. 1988;85:8943–8947.

    Article  PubMed  CAS  Google Scholar 

  15. Reaven G. Role of insulin resistance in human disease. Banting lecture 1988. Diabetes. 1988;37:1595–1607.

    Article  PubMed  CAS  Google Scholar 

  16. Newgard C, McGary J. Metabolic coupling factors in pancreatic ß-cell signal transduction. Annu Rev Biochem. 1995;64:689–719.

    Article  PubMed  CAS  Google Scholar 

  17. Heart E, Corkey R, Wikstrom J, Shirihai O, Corkey B. Glucose-dependent increase in mitochondrial membrane potential, but not cytoplasmic calcium, correlates with insulin secretion in single islet cells. Am J Physiol Endocrinol Metab. 2006;290:E143–E148.

    Article  PubMed  CAS  Google Scholar 

  18. Polonsky K, Given B, Hirsch L, et al. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med. 1988;318:1231–1239.

    Article  PubMed  CAS  Google Scholar 

  19. Bergman R, Ader M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab. 2000;11:351–356.

    Article  PubMed  CAS  Google Scholar 

  20. Schmitz-Peiffer C. Signaling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal. 2000;12:583–594.

    Article  PubMed  CAS  Google Scholar 

  21. Randle P, Garland P, Hales C, Newsholme E. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–789.

    Article  PubMed  CAS  Google Scholar 

  22. Fisher J, Nolte L, Kawanaka K, Han Dong-Ho, Jones T, Holloszy J. Glucose transport rate and glycogen synthase activity both limit skeletal muscle glycogen accumulation. Am J Physiol Endocrinol Metab. 2002;282:E1214–E1221.

    PubMed  CAS  Google Scholar 

  23. Carpentier A, Mittelman SD, Lamarche B, et al. Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol. 1999;276:E1055–E1066.

    PubMed  CAS  Google Scholar 

  24. Ahren B. Autonomic regulation of islet hormone secretion – implications for health and disease. Diabetologia. 2000;43:393–410.

    Article  PubMed  CAS  Google Scholar 

  25. Teff K, Townsend R. Early phase insulin infusion and muscarinic blockade in obese and lean subjects. Am J Physiol Regul Integr Comp Physiol. 1999;277:R198–R208.

    CAS  Google Scholar 

  26. Teff K. Nutritional implications of the cephalic-phase reflexes: endocrine responses. Appetite. 2000;34(2):206–213.

    Article  PubMed  CAS  Google Scholar 

  27. Ahrén B, Holst J. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes. 2001;50(5):1030–1038.

    Article  PubMed  Google Scholar 

  28. Ahrén B, Wierup N, Sundler F. Neuropeptides and the regulation of islet function. Diabetes. 2006;55:S98–S107.

    Article  Google Scholar 

  29. Cheng H, Straub S, Sharp G. Protein acylation in the inhibition of insulin secretion by norepinephrine, somatostatin, galanin, and PGE2 . Am J Physiol Endocrinol Metab. 2003;285:E287–E294.

    PubMed  CAS  Google Scholar 

  30. Patzelt C, Schiltz E. Conversion of proglucagon in pancreatic alpha cells: the major endproducts are glucagon and a single peptide, the major proglucagon fragment, that contains two glucagon-like sequences. Proc Natl Acad Sci USA. 1984;81(16):5007–5011.

    Article  PubMed  CAS  Google Scholar 

  31. Heptulla R, Tamborlane W, Ma TY, et al. Oral glucose augments the counterregulatory hormone response during insulin-induced hypoglycemia in humans. J Clin Endocrinol Metab. 2001;86:645–648.

    Article  PubMed  CAS  Google Scholar 

  32. Edwards C, Todd J, Mahmoudi M. Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9–39. Diabetes. 1999;48:86–93.

    Article  PubMed  CAS  Google Scholar 

  33. Raulf F, Perez J, Hoyer D, Bruns C. Differential expression of five somatostatin receptor subtypes, SSTR1-5, in the CNS and peripheral tissue. Digestion. 1994;55(3):46–53.

    Article  PubMed  CAS  Google Scholar 

  34. Heller RS, Jenny M, Collombat P, et al. Genetic determinants of pancreatic epsilon-cell development. Dev Biol. 2005;286(1):217–224.

    Article  PubMed  CAS  Google Scholar 

  35. Yoshimoto A, Mori K, Sugawara A, et al. Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J Am Soc Nephrol. 2002;13:2748–2752.

    Article  PubMed  CAS  Google Scholar 

  36. Kojima M, Kangawa K. Ghrelin: structure and function. Physiol Rev. 2005;85:495–522 doi:10.1152/physrev.00012.2004.

    Article  PubMed  CAS  Google Scholar 

  37. Hewson A, Dickson S. Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J Neuroendocrinol. 2000;12(11):1047–1049.

    Article  PubMed  CAS  Google Scholar 

  38. Jerlhag E, Egecioglu E, Dickson S, Andersson M, Svensson L, Engel JA. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol. 2004;111:45–54.

    Article  Google Scholar 

  39. Jerlhag E, Egecioglu E, Dickson S, Douhan A, Svensson L, Engel J. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol. 2007;12:6–16.

    Article  PubMed  CAS  Google Scholar 

  40. Cummings D, Purnell J, Scott Frayo R, Schmidova K, Wisse B, Weigle D. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–1719.

    Article  PubMed  CAS  Google Scholar 

  41. Shiiya T, Nakazato M, Mizuta M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab. 2002;87:240–244.

    Article  PubMed  CAS  Google Scholar 

  42. Cummings D, Weigle D, Scott Frayo R, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–1630.

    Article  PubMed  Google Scholar 

  43. Leonetti F, Silecchia G, Iacobellis G, et al. Different plasma ghrelin levels after laparoscopic gastric bypass and adjustable gastric banding in morbid obese subjects. J Clin Endocrinol Metab. 2003;88(9):4227–4231.

    Article  PubMed  CAS  Google Scholar 

  44. Liang Y, et al. Mechanisms of action of nonglucose insulin secretagogues. Ann Rev Nutr. 1994;14:59–81.

    Article  CAS  Google Scholar 

  45. Poitout V, Robertson RP. An integrated view of ß-cell dysfunction in type-II diabetes. Ann Rev Med. 1996;47:69–83.

    Article  PubMed  CAS  Google Scholar 

  46. Polansky KS, Given BD, Hirsch I, et al. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med. 1988;318:1231–1239.

    Article  Google Scholar 

  47. Filipsson K, Tornøe K, Holst J, Ahré NB. Pituitary adenylate cyclase-activating polypeptide stimulates insulin and glucagon secretion in humans. J Clin Endocrinol Metab. 1997;82:3093–3098.

    Article  PubMed  CAS  Google Scholar 

  48. Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ. Octreotide. N Engl J Med. 1996;334:246.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Poretsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brass*, B.J., Abelev, Z., Liao, E.P., Poretsky, L. (2010). Endocrine Pancreas. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09841-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09841-8_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09840-1

  • Online ISBN: 978-0-387-09841-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics