Skip to main content

Coronary Artery Disease and Cardiomyopathy

  • Chapter
  • First Online:
Principles of Diabetes Mellitus
  • 3869 Accesses

Abstract

Cardiovascular disease (CVD) is the leading cause of death in patients with type 2 diabetes. Epidemiological studies have shown that diabetes mellitus is a potent independent risk factor for cardiovascular disease.1,2 It has been recognized for several decades that diabetic patients have a 2- to 3-fold higher risk for CVD than their nondiabetic counterparts. CVD accounts for up to 80% of deaths in patients with diabetes, approximately 75% of which are due to ischemic heart disease. More than 25% of diabetic patients have evidence of CVD at diagnosis. Therefore, the American Heart Association has stated that “diabetes is a cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia MJ, McNamara M, Gordon T, Kannel WB: 16 year follow-up study. Morbidity and mortality in diabetics in the Framingham population. Diabetes. 1974;23:105–111.

    PubMed  Google Scholar 

  2. Kannel WB, McGee DL. Diabetes and cardiovascular disease; The Framingham Study. J Am Med Assoc. 1979;241:2035–2038.

    Article  Google Scholar 

  3. Grundy SM, Benjamin IJ, Burke GL, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–1146.

    PubMed  Google Scholar 

  4. Laakso M, Lehto S. Epidemiology of macrovascular disease in diabetes. Diabetes Rev. 1997;5:294–315.

    Google Scholar 

  5. Brezinka V, Padmos I. Coronary heart disease risk factors in women. Eur Heart J. 1994;15:1571–1584.

    PubMed  CAS  Google Scholar 

  6. Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–234.

    Article  PubMed  Google Scholar 

  7. Donahoe SM, Stewart GC, McCabe CH, et al. Diabetes and mortality following acute coronary syndromes. J Am Med Assoc. 2007;298:765–775.

    Google Scholar 

  8. Gu K, Cowie CC, Harris MI. Diabetes and decline in heart disease mortality in US adults. J Am Med Assoc. 1999;281:1291–1297.

    Article  Google Scholar 

  9. Jemal A, Ward E, Hao Y, et al. Trends in the leading causes of death in the United States, 1970–2002. J Am Med Assoc. 2005;294:1255–1259.

    Article  Google Scholar 

  10. McGuire DK et al. Diabetes and ischemic heart disease. Am Heart J. 1999;138:S366–S375.

    PubMed  CAS  Google Scholar 

  11. Miettinen H, Lehto S, Salomaa V, et al. Impact of diabetes on mortality after the first myocardial infarction. Diabetes Care. 1998;21:69–75.

    Article  PubMed  Google Scholar 

  12. Naka M, Hiramatsu K, Aizawa T, et al. Silent myocardial ischemia in non-insulin dependent diabetes mellitus as judged by treadmill exercise testing and coronary angiography. Am Heart J. 1992;123:46–52.

    Article  Google Scholar 

  13. Langer A, Freeman M, Josse R, et al. Detection of silent myocardial ischemia in diabetes mellitus. Am J Cardiol. 1991;67:1073–1078.

    PubMed  Google Scholar 

  14. Caracciolo EZ, Chaitman BR, Forman SR, et al. Diabetics with coronary disease have a prevalence of asymptomatic ischemia during exercise treadmill testing and ambulatory ischemia monitoring similar to that of non-diabetic patients. Circulation. 1996;93:2097–2105.

    PubMed  Google Scholar 

  15. Scholte AJ, Schuijf JD, Kharagjitsingh AV, et al. Different manifestations of coronary artery disease by stress SPECT myocardial perfusion imaging, coronary calcium scoring, and multislice CT coronary angiography in asymptomatic patients with type 2 diabetes mellitus. J Nucl Cardiol. 2008;15:503–509.

    Article  PubMed  Google Scholar 

  16. Wackers FJ, Chyun DA, Young LH, et al. Detection of Ischmeia in Asymptomatic Diabetics (DIAD) Investigators. Resolution of asymptomatic myocardial ischemia in patients with type 2 diabetes in the Detection of Ischemia in Asymptomatic Diabetics (DIAD) study. Diabetes Care. 2007;30:2892–2898.

    Article  PubMed  Google Scholar 

  17. Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors and 12-year cardiovascular mortality in men screened in the Multiple Risk Factor Intervention Trial (MRFIT). Diabetes Care. 1993;16:434–444.

    Article  PubMed  Google Scholar 

  18. WHO. Definition of metabolic syndrome in definition, diagnosis and classification of diabetes and its complications. Report of a WHO consultation. Part 1: Diagnosis and classification of diabetes mellitus. WHO/NCD/NCS/99.2. 1999. Geneva, World Health Organization - Department of Noncommunicable Disease Surveillance.

    Google Scholar 

  19. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–3421.

    Google Scholar 

  20. Balkau B, Charles MA, Drivsholm T, et al. Frequency of the WHO metabolic syndrome in European cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metab. 2002;28:364–376.

    PubMed  Google Scholar 

  21. Einhorn D, Reaven GM, Cobin RH, et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract. 2003;9:237–252; Alberti G. Introduction to the metabolic syndrome. Eur Heart J Suppl 2005;7:3–5.

    PubMed  Google Scholar 

  22. Howard BV, Best LG, Galloway JM, et al. Coronary heart disease risk equivalence in diabetes depends on concomitant risk factors. Diabetes Care. 2006;29:391–397.

    Article  PubMed  Google Scholar 

  23. Folsom AR, Chambless LE, Duncan BB, et al. The Atherosclerosis Risk in Communities Study Investigators: Prediction of coronary heart disease in middle-aged adults with diabetes. Diabetes Care. 2003;26:2777–2784.

    Article  PubMed  Google Scholar 

  24. Goldberg RB. Cardiovascular disease in diabetic patients. Med Clin North Am. 2000;84(1):81–93.

    Article  PubMed  Google Scholar 

  25. Koskinen P, Manttari M, Manninen V, et al. Coronary heart disease incidence in NIDDM patients in the Helsinki Heart Study. Diabetes Care. 1992;15:820–825.

    Article  PubMed  Google Scholar 

  26. Pyprala K, Pedersen TR, Kjekshus J, et al. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. A subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care. 1997;20:614–620.

    Google Scholar 

  27. Goldberg RB, Mellies MJ, Sacks FM, et al. For the CARE Investigators. Cardiovascular events and their reduction with pravastatin in diabetic and glucose intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the Cholesterol and Recurrent Events (CARE) trial. Circulation. 1998;98:2513–2519.

    PubMed  Google Scholar 

  28. Kearney PM, Blackwell L, Collins R, et al. Efficacy of cholesterol lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysisCholesterol Treatment Trialists’ (CTT) Collaborators. Lancet. 2008;371:117–125.

    Article  PubMed  Google Scholar 

  29. Canner PL, Furberg CD, Terrin ML, et al. Benefits of niacin by glycemic status in patients with healed myocardial infarction (from the Coronary Drug Project). Am J Cardiol. 2005;95:254–257.

    Article  PubMed  Google Scholar 

  30. Dahlöf B, Devereux RB, Kjeldsen SE, et al. For the LIFE study group. Cardiovascular morbidity and mortality in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.

    PubMed  Google Scholar 

  31. Barzilay JI, Davis BR, Cutler JA, et al. Fasting glucose levels and incident diabetes mellitus in older nondiabetic adults randomized to receive 3 different classes of antihypertensive treatment: A report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2006;166:2191–2201.

    Article  PubMed  Google Scholar 

  32. Dahlöf B, Sever PS, Pulter NR, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomized controlled trial. Lancet. 2005;366:895–906.

    Article  PubMed  Google Scholar 

  33. Fossum E, Gleim GW, Kjeldsen SE, et al. The effect of baseline physical activity on cardiovascular outcomes and new-onset diabetes in patients treated for hypertension and left ventricular hypertrophy: the LIFE study. J Intern Med. 2007;262:439–448.

    Article  PubMed  Google Scholar 

  34. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomized trial. Hot Study Group. Lancet. 1998;351:1755–1762.

    Article  PubMed  Google Scholar 

  35. Curb JD, Pressel SL, Cutler JA, et al. For the Systolic Hypertension in the Elderly Program Cooperative Research Group. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. J Am Med Assoc. 1996;276:1886–1892.

    Article  Google Scholar 

  36. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes. UKPDS 38. Br Med J. 1998;317:703–713.

    Google Scholar 

  37. Estacio RO, Jeffers BW, Hiatt WR, et al. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin dependent diabetes and hypertension. N Engl J Med. 1998;338:645–652.

    Article  PubMed  Google Scholar 

  38. Tatti P, Pahor M, Byrington RB, et al. Outcome results of the Fosinopril versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM. Diabetes Care. 1998;21:597–603.

    Article  PubMed  Google Scholar 

  39. Heart Outcomes Prevention Evaluation Study Investigators: Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355:253–259.

    Google Scholar 

  40. Lindholm LH, Ibsen H, Dahlöf B, et al. for the LIFE study group: Cardiovascular morbidity and mortality in hypertensive patients with diabetes: The LIFE Study. Lancet. 2002;359:1004–1010.

    PubMed  Google Scholar 

  41. Patel A, ADVANCE Collaborative Group, MacMahon S, Chalmers J, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007;370:829–840.

    PubMed  Google Scholar 

  42. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1994;310:356–360.

    Google Scholar 

  43. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in maturity-onset diabetes. N Engl J Med. 2001;345:861–869.

    Article  PubMed  Google Scholar 

  44. Parving H-H, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 Diabetes. N Engl J Med. 2001;345:870–878.

    Article  PubMed  Google Scholar 

  45. Howard BV, Roman MJ, Devereux RB, et al. Effect of lower targets for blood pressure and LDL cholesterol on atherosclerosis in diabetes: the SANDS randomized trial. J Am Med Assoc. 2008;299:1678–1689.

    Google Scholar 

  46. Brownlee M. Glycation and diabetic complications. Diabetes. 1994;43:836–841.

    PubMed  Google Scholar 

  47. West KM, Ahuja MM, Bennet PH, et al. The role of circulating glucose and triglyceride concentrations and their interactions with other “risk factors” as determinants of arterial disease in nine diabetic population samples from the WHO Multinational Study. Diabetes Care. 1983;6:361–369.

    Article  PubMed  Google Scholar 

  48. Wilson PW, Cupples LA, Kannel WB. Is hyperglycemia associated with cardiovascular disease? The Framingham Study. Am Heart J. 1991;121(2 Pt 1):586–590.

    PubMed  Google Scholar 

  49. Jarrett RJ, Shipley MJ. Type 2 (non-insulin dependent) diabetes mellitus and cardiovascular disease. Putative associations via common antecedents. Further evidence from the Whitehall Study. Diabetologia. 1988;31:737–740.

    PubMed  Google Scholar 

  50. Kuusisto J, Mykkänen L, Pyorala K, et al. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes. 1994;43:960–967.

    Article  PubMed  Google Scholar 

  51. Klein R. Kelly West Lecture 1994. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care. 1995;18:258–268.

    Article  PubMed  Google Scholar 

  52. Diabetes Control and Complications Trial Research Group (DVVT): The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–986.

    Google Scholar 

  53. UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS33). Lancet. 1998;352:837–852.

    Google Scholar 

  54. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–2559.

    PubMed  Google Scholar 

  55. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–2572.

    Article  PubMed  Google Scholar 

  56. Wilcox R, Kupfer S, Erdmann E; PROactive Study investigators. Effects of pioglitazone on major adverse cardiovascular events in high-risk patients with type 2 diabetes: results from PROspective pioglitAzone Clinical Trial In macro Vascular Events (PROactive 10). Am Heart J. 2008;155:712–717.

    Article  PubMed  Google Scholar 

  57. Soylemez Wiener R, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. J Am Med Assoc. 2008;300:933–944.

    Google Scholar 

  58. Colwell JA. Aspirin therapy in diabetes. Diabetes Care. 1997;20:1767–1771.

    PubMed  Google Scholar 

  59. Cederholm J, Eeg-Olofsson K, Eliasson B, et al. On behalf of the Swedish National Diabetes Register. Risk prediction of cardiovascular disease in type 2 diabetes: A risk equation from the Swedish National Diabetes Register (NDR). Diabetes Care. 2008 Jun 30. [Epub ahead of print].

    Google Scholar 

  60. Malmberg K, Ryden L, Efendic S, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI Study): effects on mortality at 1 year. J Am Coll Cardiol. 1995;26:57–65.

    Article  PubMed  Google Scholar 

  61. Kendall MJ, Lynch KP, Hjalmarson A, et al. Beta-blockers and sudden cardiac death. Ann Intern Med. 1995;123:358–367.

    PubMed  Google Scholar 

  62. Komowski R, Mintz GS, Kent KM, et al. Increased restenosis in diabetes mellitus after coronary interventions is due to exaggerated intimal hyperplasia. Circulation. 1997;95:1366–1369.

    Google Scholar 

  63. The Bypass Angioplasty Revascularization Investigation (BARI) Investigators: Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med. 1996;335:217–225.

    Google Scholar 

  64. BARI Investigators. The final 10-year follow-up results from the BARI randomized trial. J Am Coll Cardiol. 2007;49:1600–1606.

    Google Scholar 

  65. King SB, Lembo NJ, Weintraub WS, et al. For the Emory Angioplasty Versus Surgery Trial (EAST). A randomized trial comparing coronary angioplasty with coronary bypass surgery. N Engl J Med. 1994;331:1044–1050.

    Article  PubMed  Google Scholar 

  66. Brooks MM, Grye RL, Genuth S, et al. Hypotheses, design and methods for the Fypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Trial. Am J Cardiol. 2006;12(Suppl 1):9–19.

    Google Scholar 

  67. Mahmud E, Bromberg-Marin G, Palakodeti V, et al. Clinical efficacy of drug-eluting stents in diabetic patients: a meta-analysis. J Am Coll Cardiol. 2007;49:1600–1606.

    Article  Google Scholar 

  68. Abbott RD, Donahue RP, Kannel WB, et al. The impact of diabetes on survival following myocardial infarction in men vs. women. The Framingham Study. J Am Med Assoc. 1988;260:3456–3460.

    Article  CAS  Google Scholar 

  69. de Simone G, Devereux RB, Chinali M, et al. Diabetes and incident congestive heart failure: The Strong Heart Study. Circulation. 2007;116(Suppl II):II-835.

    Google Scholar 

  70. Liu JE, Robbins DC, Sosenko J, et al. Abnormal left ventricular structure and function are associated with recent conversion from normal glucose tolerance to diabetes mellitus – the Strong Heart Study. Diabetes. 2001;50(suppl 2):s147.

    Google Scholar 

  71. Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–1566.

    Article  PubMed  Google Scholar 

  72. Liao Y, Cooper RS, McGee DL, et al. The relative effects of left ventricular hypertrophy, coronary artery disease, and ventricular dysfunction on survival among black adults. J Am Med Assoc. 1995;273:1592–1597.

    Article  Google Scholar 

  73. Fein FS, Sonnenblick EH. Diabetic cardiomyopathy. Cardiovascular Drugs Ther. 1994;8:65–73.

    Google Scholar 

  74. Van Hoeven KH, Factor SM. A comparison of the pathological spectrum of hypertensive, diabetic and hypertensive-diabetic heart disease. Circulation. 1990;82:848–855.

    PubMed  Google Scholar 

  75. Galderisi M, Anderson KM, Wilson PW, et al. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (The Framingham Heart Study). Am J Cardiol. 1991;68:85–89.

    Article  PubMed  Google Scholar 

  76. Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function: The Strong Heart Study. Circulation. 2000;101:2271–2276.

    PubMed  Google Scholar 

  77. Bella JN, Devereux RB, Roman MJ, et al. Separate and joint cardiovascular effects of hypertension and diabetes: The Strong Heart Study. Am J Cardiol. 2001;87:1260–1265.

    Article  PubMed  Google Scholar 

  78. Palmieri V, Bella JN, Arnett DK, et al. Impact of Type II Diabetes on Left Ventricular Geometry and Function: The Hypertension Genetic Epidemiology Network (HyperGEN) Study. Circulation. 2001;103:102–107.

    PubMed  Google Scholar 

  79. De Marco M, de Simone G, Russell M, et al. Metabolic and cardiovascular characteristics of diabetes in adolescents and young adults: the Strong Heart Study. Circulation. 2008;118 (Suppl 2):1116.

    Google Scholar 

  80. Liu JE, Palmieri V, Roman MJ, et al. Cardiovascular disease and prognosis in adults with glucose disorders: The Strong Heart Study. J Am Coll Cardiol. 2000;35:263A.

    Article  Google Scholar 

  81. Okin PM, Devereux RB, Lee ET, et al. Electrocardiographic repolarization complexity and abnormality predict all-cause and cardiovascular mortality in diabetes: The Strong Heart Study. Diabetes. 2004;53:434–440.

    Article  PubMed  Google Scholar 

  82. Okin PM, Gerdts E, Snapinn SM, et al. The impact of diabetes on regression of electrocardiographic left ventricular hypertrophy and the prediction of outcome during antihypertensive therapy: The LIFE Study. Circulation. 2006;113:1588–1596.

    PubMed  Google Scholar 

  83. Gerdts E, Okin PM, Omvik P, et al. Impact of concomitant diabetes on changes in left ventricular structure and systolic function during long-term antihypertensive treatment in hypertensive patients with left ventricular hypertrophy (the LIFE study). Nutr Metab Cardiovasc Dis. 2009;19:306–312.

    Article  Google Scholar 

  84. Okin PM, Harris KE, Jern S, et al. In-treatment resolution or absence of electrocardiographic left ventricular hypertrophy is associated with decreased incidence of new-onset diabetes mellitus in hypertensive patients: The LIFE Study. Hypertension. 2007;50:984–990.

    Article  PubMed  Google Scholar 

  85. Regan TJ, Wu CF, Yeh CK, et al. Myocardial composition and function in diabetes: the effect of chronic insulin use. Circ Res. 1981;49:1268–1277.

    PubMed  Google Scholar 

  86. Jain A, Avendano G, Dharamsey S, et al. Left ventricular diastolic function in hypertension and role of plasma glucose and insulin. Comparison with diabetic heart. Circulation. 1996;93:1396–1402.

    PubMed  Google Scholar 

  87. Hildebrandt P, Wachtell K, Dahlöf B, et al. Impairment of cardiac function in hypertensive patients with type 2 diabetes. A LIFE study. Diabet Med. 2005;22:1005–1011.

    Article  PubMed  Google Scholar 

  88. Mock MB, Ringqvist I, Fischer LD, and Participants in the Coronary Artery Surgery Study (CASS) Registry. Survival of medically treated patients in the Coronary Artery Study (CASS) registry. Circulation. 1982;66:562–571.

    Article  Google Scholar 

  89. Liu JE, Palmieri V, Roman MJ, et al. The impact of glycemia and diabetes on left ventricular filling pattern: The Strong Heart Study. J Am Coll Cardiol. 2001;37:1943–1949.

    Article  PubMed  Google Scholar 

  90. Bella JN, Palmieri V, Liu JE, et al. Mitral E/A ratio as a predictor of mortality in middle-aged and elderly adults: The Strong Heart Study. Circulation. 2002;105:1928–1933.

    Article  PubMed  Google Scholar 

  91. Liu JE, Robbins DC, Palmieri V, et al. Association of albuminuria with systolic and diastolic left ventricular dysfunction in type 2 diabetes: The Strong Heart Study. J Am Coll Cardiol. 2003;41:2022–2028.

    PubMed  Google Scholar 

  92. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, et al. Albuminuria reflects widespread vascular damage – The Steno Hypothesis. Diabetologia. 1989;32:219–226.

    PubMed  Google Scholar 

  93. Yla-Herrtuala S, Sumuvuori H, Karkola K, et al. Glycosoaminoglycans in normal and atherosclerotic human coronary arteries. Lab Invest. 1986;61:231–236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Devereux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Devereux, R.B. (2010). Coronary Artery Disease and Cardiomyopathy. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09841-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09841-8_32

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09840-1

  • Online ISBN: 978-0-387-09841-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics