Advertisement

Endocrine Pancreas

  • Barry J. Brass*
  • Zinoviy Abelev
  • Emilia Pauline Liao
  • Leonid Poretsky
Chapter

Abstract

The endocrine pancreas is composed of the islets of Langerhans, which comprise approximately two million clusters of cells dispersed within the acinar tissue of the exocrine pancreas. Whereas the exocrine pancreas is responsible for secreting digestive enzymes for nutrient absorption, the endocrine pancreas regulates nutrient homeostasis and metabolism, including uptake, storage, and release of metabolic fuels. In adults, the islets constitute between 1 and 2% of pancreatic mass. At least four cell types have been identified in the islets: α-cells, β-cells, δ-cells, and pancreatic polypeptide (PP) cells. β-Cells constitute the majority of islet cells and are concentrated in the anterior head, body, and tail of the pancreas.

Keywords

Insulin Secretion Vasoactive Intestinal Polypeptide Pancreatic Polypeptide Glucagon Secretion Endocrine Pancreas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wierup N, Svensson H, Mulder H, Sundler F. The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept. 2002;107:63–69.PubMedCrossRefGoogle Scholar
  2. 2.
    Wierup N, Yang S, McEvilly RJ, Mulder H, Sundler F. Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells. J Histochem Cytochem. 2004;52:301–310.PubMedCrossRefGoogle Scholar
  3. 3.
    Johansson B-L, Sjöberg S, Wahren J. The influence of human C-peptide on renal function and glucose utilization in type 1 (insulin-dependent) diabetic patients. Diabetologia. 1992;35:121 –128.PubMedCrossRefGoogle Scholar
  4. 4.
    Cotter M, Cameron N. The effects of insulin C-peptide on nerve function in diabetic rats are blocked by nitric oxide synthase inhibition (Abstract). Diabetologia. 2001;44(1):A46.Google Scholar
  5. 5.
    Ekberg K, Johansson B-L, Wahren J. Stimulation of blood flow by C-peptide in patients with type 1 diabetes. Diabetologia. 2001;44(1):A323.Google Scholar
  6. 6.
    Fernqvist-Forbes E, Johansson B-L, Eriksson M. Effects of C-peptide on forearm blood flow and brachial artery dilatation in patients with type 1 diabetes. Acta Physiol Scand. 2001;172:159 –165.PubMedCrossRefGoogle Scholar
  7. 7.
    Forst T, Kunt T, Pohlmann T, Goitom K, Engelbach M, Beyer J, Pfützner A. Biological activity of C-peptide on the skin microcirculation in patients with insulin dependent diabetes mellitus. J Clin Invest. 1998;101:2036 –2041.PubMedCrossRefGoogle Scholar
  8. 8.
    Hansen A, Johansson B, Wahren J, von Bibra H. C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. Diabetes. 2002;51:3077–3082.PubMedCrossRefGoogle Scholar
  9. 9.
    Marques R, Fontaine M, Rogers J. C-peptide: much more than a byproduct of insulin biosynthesis. Pancreas. 2004;29(3):231–238.PubMedCrossRefGoogle Scholar
  10. 10.
    Kamiya H, Zhang W, Ekberg K, Wahren J, Sima A. C-peptide reverses nociceptive neuropathy in type 1 diabetes. Diabetes. 2006;55:3581–3587.PubMedCrossRefGoogle Scholar
  11. 11.
    Samnegård B, Jacobson S, Jaremko G, et al. C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol Dial Transplant. 2005;20(3):532–538.PubMedCrossRefGoogle Scholar
  12. 12.
    Ekberg K, Brismar T, Johansson B-L, Jonsson B, Lindström P, Wahren J. Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes. 2003;52(2):536–541.PubMedCrossRefGoogle Scholar
  13. 13.
    Ekberg K, Brismar T, Johansson B-L, et al. C-peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care. 2007;30(1):71–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Carroll R, Hammer R, Chan S, et al. A mutant human proinsulin is secreted from islets of Langerhans in increased amounts via an unregulated pathway. Proc Natl Acad Sci USA. 1988;85:8943–8947.PubMedCrossRefGoogle Scholar
  15. 15.
    Reaven G. Role of insulin resistance in human disease. Banting lecture 1988. Diabetes. 1988;37:1595–1607.PubMedCrossRefGoogle Scholar
  16. 16.
    Newgard C, McGary J. Metabolic coupling factors in pancreatic ß-cell signal transduction. Annu Rev Biochem. 1995;64:689–719.PubMedCrossRefGoogle Scholar
  17. 17.
    Heart E, Corkey R, Wikstrom J, Shirihai O, Corkey B. Glucose-dependent increase in mitochondrial membrane potential, but not cytoplasmic calcium, correlates with insulin secretion in single islet cells. Am J Physiol Endocrinol Metab. 2006;290:E143–E148.PubMedCrossRefGoogle Scholar
  18. 18.
    Polonsky K, Given B, Hirsch L, et al. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med. 1988;318:1231–1239.PubMedCrossRefGoogle Scholar
  19. 19.
    Bergman R, Ader M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab. 2000;11:351–356.PubMedCrossRefGoogle Scholar
  20. 20.
    Schmitz-Peiffer C. Signaling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal. 2000;12:583–594.PubMedCrossRefGoogle Scholar
  21. 21.
    Randle P, Garland P, Hales C, Newsholme E. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–789.PubMedCrossRefGoogle Scholar
  22. 22.
    Fisher J, Nolte L, Kawanaka K, Han Dong-Ho, Jones T, Holloszy J. Glucose transport rate and glycogen synthase activity both limit skeletal muscle glycogen accumulation. Am J Physiol Endocrinol Metab. 2002;282:E1214–E1221.PubMedGoogle Scholar
  23. 23.
    Carpentier A, Mittelman SD, Lamarche B, et al. Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol. 1999;276:E1055–E1066.PubMedGoogle Scholar
  24. 24.
    Ahren B. Autonomic regulation of islet hormone secretion – implications for health and disease. Diabetologia. 2000;43:393–410.PubMedCrossRefGoogle Scholar
  25. 25.
    Teff K, Townsend R. Early phase insulin infusion and muscarinic blockade in obese and lean subjects. Am J Physiol Regul Integr Comp Physiol. 1999;277:R198–R208.Google Scholar
  26. 26.
    Teff K. Nutritional implications of the cephalic-phase reflexes: endocrine responses. Appetite. 2000;34(2):206–213.PubMedCrossRefGoogle Scholar
  27. 27.
    Ahrén B, Holst J. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes. 2001;50(5):1030–1038.PubMedCrossRefGoogle Scholar
  28. 28.
    Ahrén B, Wierup N, Sundler F. Neuropeptides and the regulation of islet function. Diabetes. 2006;55:S98–S107.CrossRefGoogle Scholar
  29. 29.
    Cheng H, Straub S, Sharp G. Protein acylation in the inhibition of insulin secretion by norepinephrine, somatostatin, galanin, and PGE2 . Am J Physiol Endocrinol Metab. 2003;285:E287–E294.PubMedGoogle Scholar
  30. 30.
    Patzelt C, Schiltz E. Conversion of proglucagon in pancreatic alpha cells: the major endproducts are glucagon and a single peptide, the major proglucagon fragment, that contains two glucagon-like sequences. Proc Natl Acad Sci USA. 1984;81(16):5007–5011.PubMedCrossRefGoogle Scholar
  31. 31.
    Heptulla R, Tamborlane W, Ma TY, et al. Oral glucose augments the counterregulatory hormone response during insulin-induced hypoglycemia in humans. J Clin Endocrinol Metab. 2001;86:645–648.PubMedCrossRefGoogle Scholar
  32. 32.
    Edwards C, Todd J, Mahmoudi M. Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9–39. Diabetes. 1999;48:86–93.PubMedCrossRefGoogle Scholar
  33. 33.
    Raulf F, Perez J, Hoyer D, Bruns C. Differential expression of five somatostatin receptor subtypes, SSTR1-5, in the CNS and peripheral tissue. Digestion. 1994;55(3):46–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Heller RS, Jenny M, Collombat P, et al. Genetic determinants of pancreatic epsilon-cell development. Dev Biol. 2005;286(1):217–224.PubMedCrossRefGoogle Scholar
  35. 35.
    Yoshimoto A, Mori K, Sugawara A, et al. Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J Am Soc Nephrol. 2002;13:2748–2752.PubMedCrossRefGoogle Scholar
  36. 36.
    Kojima M, Kangawa K. Ghrelin: structure and function. Physiol Rev. 2005;85:495–522 doi:10.1152/physrev.00012.2004.PubMedCrossRefGoogle Scholar
  37. 37.
    Hewson A, Dickson S. Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J Neuroendocrinol. 2000;12(11):1047–1049.PubMedCrossRefGoogle Scholar
  38. 38.
    Jerlhag E, Egecioglu E, Dickson S, Andersson M, Svensson L, Engel JA. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol. 2004;111:45–54.CrossRefGoogle Scholar
  39. 39.
    Jerlhag E, Egecioglu E, Dickson S, Douhan A, Svensson L, Engel J. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol. 2007;12:6–16.PubMedCrossRefGoogle Scholar
  40. 40.
    Cummings D, Purnell J, Scott Frayo R, Schmidova K, Wisse B, Weigle D. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–1719.PubMedCrossRefGoogle Scholar
  41. 41.
    Shiiya T, Nakazato M, Mizuta M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab. 2002;87:240–244.PubMedCrossRefGoogle Scholar
  42. 42.
    Cummings D, Weigle D, Scott Frayo R, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–1630.PubMedCrossRefGoogle Scholar
  43. 43.
    Leonetti F, Silecchia G, Iacobellis G, et al. Different plasma ghrelin levels after laparoscopic gastric bypass and adjustable gastric banding in morbid obese subjects. J Clin Endocrinol Metab. 2003;88(9):4227–4231.PubMedCrossRefGoogle Scholar
  44. 44.
    Liang Y, et al. Mechanisms of action of nonglucose insulin secretagogues. Ann Rev Nutr. 1994;14:59–81.CrossRefGoogle Scholar
  45. 45.
    Poitout V, Robertson RP. An integrated view of ß-cell dysfunction in type-II diabetes. Ann Rev Med. 1996;47:69–83.PubMedCrossRefGoogle Scholar
  46. 46.
    Polansky KS, Given BD, Hirsch I, et al. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med. 1988;318:1231–1239.CrossRefGoogle Scholar
  47. 47.
    Filipsson K, Tornøe K, Holst J, Ahré NB. Pituitary adenylate cyclase-activating polypeptide stimulates insulin and glucagon secretion in humans. J Clin Endocrinol Metab. 1997;82:3093–3098.PubMedCrossRefGoogle Scholar
  48. 48.
    Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ. Octreotide. N Engl J Med. 1996;334:246.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Barry J. Brass*
    • 1
  • Zinoviy Abelev
    • 1
  • Emilia Pauline Liao
    • 1
  • Leonid Poretsky
    • 1
  1. 1.Division of Endocrinology and MetabolismAlbert Einstein College ofMedicine, Beth Israel Medical CenterNew YorkUSA

Personalised recommendations