Skip to main content

Rodent Models of Diabetes

  • Chapter
  • First Online:
Principles of Diabetes Mellitus

Abstract

Animal models have been used extensively to study the pathophysiology of type 1 and type 2 diabetes. These models have been invaluable in the development of therapeutic agents to treat the diseases and associated complications. Rodents, primarily mice and rats, are the predominant animals used as models of diabetes. The use of these animals is relatively inexpensive and practical. The importance of mouse models has increased after the introduction of advanced methods for genetic manipulation, such as tissue-specific transgenic expression and targeted gene knockout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makino S, Kunimoto K, Munaoko Y, et al. Breeding of a non-obese diabetic strain of mice. Exp Anim. 1980;29:1–13.

    CAS  Google Scholar 

  2. Colle E, Guttmann RD, Seemayer TA. Spontaneous diabetes mellitus syndrome in the rat. I. Association with the major histocompatibility complex. J Exp Med. 1981;154:1237–1242.

    Article  PubMed  CAS  Google Scholar 

  3. Kawano K, Hirashima T, Mori S, et al. New inbred strain of Long-Evans Tokushima Lean rats with IDDM without lymphopenia. Diabetes. 1991;40:1375–1381.

    Article  PubMed  CAS  Google Scholar 

  4. Komeda K, Noda M, Terao K, et al. Establishment of two substrains, diabetes-prone and non-diabetic, from Long-Evans Tokushima Lean (LETL) rats. Endocr J. 1998;45:737–744.

    Article  PubMed  CAS  Google Scholar 

  5. Todd JA. Genetic analysis of Type 1 diabetes using whole genome approaches. Proc Natl Acad Sci USA. 1995;12:8560–8565.

    Article  Google Scholar 

  6. Litherland SA, Grebe KM, Belkin NS, et al. Nonobese diabetic mouse congenic analysis reveals chromosome 11 locus contributing to diabetes susceptibility, macrophage STAT5 dysfunction, and granulocyte-macrophage colony-stimulating factor overproduction. J Immunol. 2005;175(7):4561–4565.

    PubMed  CAS  Google Scholar 

  7. Eizirik DL, Mandrup-Poulsen T. A choice of death – the signal transduction of immune-mediated β-cell apoptosis. Diabetologia. 2001;44:2115–2133.

    Article  PubMed  CAS  Google Scholar 

  8. Asayama K, Nyfeler F, English D, et al. Alloxan-induced free radical production in isolated cells. Selective effect on islet cells. Diabetes. 1984;33(10):1008–1011.

    Article  PubMed  CAS  Google Scholar 

  9. Bono VH. Review of mechanism of action studies of the nitrosoureas Streptomyces achromogenes. Cancer Treat Rep. 1976;60:699–702.

    PubMed  CAS  Google Scholar 

  10. Wilson ME, Scheel D, German MS. Gene expression cascades in pancreatic development. Mech Dev. 2003;120:65–80.

    Article  PubMed  CAS  Google Scholar 

  11. Chua S Jr, Herberg L, Leiter EH. Obesity/diabetes in mice with mutations in leptin or leptin receptor genes. In: Shafrir E, ed. Animal Models of Diabetes: Frontiers in Research. Boca Raton, FL: CRC Press; 2007:61–102.

    Google Scholar 

  12. Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res. 2007;125(3):451–472.

    PubMed  CAS  Google Scholar 

  13. Coleman DL. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia. 1978;14(3):141–148.

    Article  PubMed  CAS  Google Scholar 

  14. Peterson RG. The Zucker diabetic fatty (ZDF) rats – lessons from a leptin receptor defect diabetic model. In: Shafrir E, ed. Animal Models of Diabetes: Frontiers in Research. Boca Raton, FL: CRC Press; 2007:103–118.

    Chapter  Google Scholar 

  15. Pickavance LC, Widdowson PS, Foster JR, et al. Chronic treatment with the thiazolidinedione, MCC-555, is associated with reductions in nitric oxide synthase activity and beta-cell apoptosis in the pancreas of the Zucker Diabetic Fatty rat. Int J Exp Pathol. 2003;84(2):83–89.

    Article  PubMed  CAS  Google Scholar 

  16. Chiu S, Fisler JS, Espinal GM, et al. The yellow agouti mutation alters some but not all responses to diet and exercise. Obes Res. 2004;12(8):1243–1255.

    Article  PubMed  CAS  Google Scholar 

  17. Leiter EH. Carboxypeptidase E and obesity in the mouse. J Endocrinol. 1997;155(2):211–214.

    Article  PubMed  CAS  Google Scholar 

  18. Taketomi S. KK and KKAy mice: models of type 2 diabetes with obesity. In: Shafrir E, ed. Animal Models of Diabetes: Frontiers in Research. Boca Raton, FL: CRC Press; 2007:335–348.

    Chapter  Google Scholar 

  19. Sohda T, Kawamatsu Y, Fujita T, et al. Discovery and development of a new insulin sensitizing agent, pioglitazone. Yakugaku Zasshi. 2002;122(11):909–918.

    Article  PubMed  CAS  Google Scholar 

  20. Fam BC, Andrikopoulos S. The New Zealand obese mouse: polygenic model of obesity, glucose intolerance, and the metabolic syndrome. In: Shafrir E, ed. Animal Models of Diabetes: Frontiers in Research. Boca Raton, FL: CRC Press; 2007:139–158.

    Chapter  Google Scholar 

  21. Cho YR, Kim HJ, Park SY, et al. Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;293(1):E327–E336.

    Article  PubMed  CAS  Google Scholar 

  22. Clee SM, Attie AD. The genetic landscape of type 2 diabetes in mice. Endocr Rev. 2007;28(1):48–83.

    Article  PubMed  CAS  Google Scholar 

  23. Ikeda H, Sugiyama Y, Matsuo T. Characterization of the Wistar fatty rat. In: Oomura Y, et al., eds. Progress in Obesity Research. London, Paris: John Libbey; 1990:435–439.

    Google Scholar 

  24. Östenson C. The Goto-Kakizaki rat. In: Shafrir E, ed. Animal Models of Diabetes: Frontiers in Research. Boca Raton, FL: CRC Press; 2007:119–138.

    Chapter  Google Scholar 

  25. Koletsky RJ, Velliquette RA, Ernsberger P. The SHROB (Koletsky) rat as a model for metabolic syndrome. In: Shafrir E, ed. Animal Models of Diabetes: Frontiers in Research. Boca Raton, FL: CRC Press; 2007:185–208.

    Google Scholar 

  26. Michaelis OE 4th, Ellwood KC, Judge JM, et al. Effect of dietary sucrose on the SHR/N-corpulent rat: a new model for insulin-independent diabetes. Am J Clin Nutr. 1984;39(4):612–618.

    PubMed  CAS  Google Scholar 

  27. Kawano K. OLETF rats: model for the metabolic syndrome and diabetic nephropathy in humans. In: Shafrir E, ed. Animal Models of Diabetes: Frontiers in Research. Boca Raton, FL: CRC Press; 2007:209–222.

    Chapter  Google Scholar 

  28. Accili D, Drago J, Lee EJ, et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet. 1996;12(1):106–109.

    Article  PubMed  CAS  Google Scholar 

  29. Tamemoto H, Tobe K, Yamauchi T, et al. Insulin resistance syndrome in mice deficient in insulin receptor substrate-1. Ann NY Acad Sci. 1997;827(1):85–93.

    Article  PubMed  CAS  Google Scholar 

  30. Withers DJ, Gutierrez JS, Towery H, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998;391:900–904.

    Article  PubMed  CAS  Google Scholar 

  31. Wright JR Jr, O‘Hali W, Yang H, et al. GLUT-4 Deficiency and severe peripheral resistance to insulin in the teleost fish tilapia. Gen Comp Endocrinol. 1998;111(1):20–27.

    Article  PubMed  CAS  Google Scholar 

  32. Scrocchi LS, Brown TJ, MacLusky N, et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med. 1996;2:1254–1258.

    Article  PubMed  CAS  Google Scholar 

  33. Marguet D, Baggio L, Kobayashi T, et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci USA. 2000;97(12):6874–6879.

    Article  PubMed  CAS  Google Scholar 

  34. Masiello P, Bergamini E. Nicotinamide and streptozotocin diabetes in the rat. Factors influencing the effectiveness of the protection. Experientia. 1977;33(9):1246–1247.

    Article  PubMed  CAS  Google Scholar 

  35. Portha B, Movassat J, Cuzin-Tourrel C, et al. Neonatally streptozotocin-induced (n-STZ) diabetic rats: a family of type 2 diabetes models. In: Shafrir E, ed. Animal Models of Diabetes: Frontiers in Research. Boca Raton, FL: CRC Press; 2007:223–250.

    Google Scholar 

  36. Morrison JF, Shehab S, Sheen R, et al. Sensory and autonomic nerve changes in the MSG-treated rat: a model of type II diabetes. Exp Physiol. 2007;93:213–222.

    Article  PubMed  Google Scholar 

  37. Bryson JM, Cooney GJ, Wensley VR, et al. Tissue differences in the response of the pyruvate dehydrogenase complex to a glucose load during the development of obesity in gold-thioglucose-obese mice. Biochem J. 1995;305(Pt 3):811–816.

    PubMed  Google Scholar 

  38. Winzell MS, Ahrén B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes. 2004;53(Suppl 3):S215–S219.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J. Christopher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Christopher, R.J., Takeuchi, K., Lee, B. (2010). Rodent Models of Diabetes. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09841-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09841-8_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09840-1

  • Online ISBN: 978-0-387-09841-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics