Skip to main content

Supervised Learning

  • Chapter
  • First Online:
Data Mining and Knowledge Discovery Handbook

Summary

This chapter summarizes the fundamental aspects of supervised methods. The chapter provides an overview of concepts from various interrelated fields used in subsequent chapters. It presents basic definitions and arguments from the supervised machine learning literature and considers various issues, such as performance evaluation techniques and challenges for data mining tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbel, R. and Rokach, L., Classifier evaluation under limited resources, Pattern Recognition Letters, 27(14): 1619–1631, 2006, Elsevier.

    Article  Google Scholar 

  • Averbuch, M. and Karson, T. and Ben-Ami, B. and Maimon, O. and Rokach, L., Contextsensitive medical information retrieval, The 11th World Congress on Medical Informatics (MEDINFO 2004), San Francisco, CA, September 2004, IOS Press, pp. 282–286.

    Google Scholar 

  • Boutella R. M., Luob J., Shena X., Browna C. M., Learning multi-label scene classification, Pattern Recognition, 37(9), pp. 1757-1771, 2004.

    Article  Google Scholar 

  • Buja, A. and Lee, Y.S., Data Mining criteria for tree based regression and classification, Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining, (pp 27-36), San Diego, USA, 2001.

    Google Scholar 

  • Clare, A., King R.D., Knowledge Discovery in Multi-label Phenotype Data, Lecture Notes in Computer Science, Vol. 2168, Springer, Berlin, 2001.

    Book  Google Scholar 

  • Cohen S., Rokach L., Maimon O., Decision Tree Instance Space Decomposition with Grouped Gain-Ratio, Information Science, Volume 177, Issue 17, pp. 3592-3612, 2007.

    Article  Google Scholar 

  • Cohen, W. W., Schapire R.E., and Singer Y., Learning to order things. Journal of Artificial Intelligence Research, 10:243270, 1999.

    MathSciNet  Google Scholar 

  • Dietterich, T. G., Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7): 1895-1924, 1998.

    Article  Google Scholar 

  • Dietterich, T. G., Lathrop, R. H. , and Perez, T. L., Solving the multiple-instance problem with axis-parallel rectangles, Artificial Intelligence, 89(1-2), pp. 31-71, 1997.

    Article  MATH  Google Scholar 

  • Duda, R., and Hart, P., Pattern Classification and Scene Analysis, New-York, Wiley, 1973.

    MATH  Google Scholar 

  • Dunteman, G.H., Principal Components Analysis, Sage Publications, 1989.

    Google Scholar 

  • Fayyad, U., Piatesky-Shapiro, G. & Smyth P., From Data Mining to Knowledge Discovery: An Overview. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds), Advances in Knowledge Discovery and Data Mining, pp 1-30, AAAI/MIT Press, 1996.

    Google Scholar 

  • Friedman, J.H. & Tukey, J.W., A Projection Pursuit Algorithm for Exploratory Data Analysis, IEEE Transactions on Computers, 23: 9, 881-889, 1973.

    Article  Google Scholar 

  • Fukunaga, K., Introduction to Statistical Pattern Recognition. San Diego, CA: Academic, 1990.

    MATH  Google Scholar 

  • Fürnkranz J. and Hüllermeier J., Pairwise preference learning and ranking. In Proc. ECML03, pages 145156, Cavtat, Croatia, 2003.

    Google Scholar 

  • Grumbach S., Milo T., Towards Tractable Algebras for Bags. Journal of Computer and System Sciences 52(3): 570-588, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • Har-Peled S., Roth D., and Zimak D., Constraint classification: A new approach to multiclass classification. In Proc. ALT02, pages 365379, Lubeck, Germany, 2002, Springer.

    Google Scholar 

  • Hunter L., Klein T. E., Finding Relevant Biomolecular Features. ISMB 1993, pp. 190-197, 1993.

    Google Scholar 

  • Hwang J., Lay S., and Lippman A., Nonparametric multivariate density estimation: A comparative study, IEEE Transaction on Signal Processing, 42(10): 2795-2810, 1994.

    Article  Google Scholar 

  • Janikow, C.Z., Fuzzy Decision Trees: Issues and Methods, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 28, Issue 1, pp. 1-14. 1998.

    Google Scholar 

  • Jimenez, L. O., & Landgrebe D. A., Supervised Classification in High- Dimensional Space: Geometrical, Statistical, and Asymptotical Properties of Multivariate Data. IEEE Transaction on Systems Man, and Cybernetics - Part C: Applications and Reviews, 28:39-54, 1998.

    Article  Google Scholar 

  • Jin, R. , & Ghahramani Z., Learning with Multiple Labels, The Sixteenth Annual Conference on Neural Information Processing Systems (NIPS 2002) Vancouver, Canada, pp. 897-904, December 9-14, 2002.

    Google Scholar 

  • Kim J.O. & Mueller C.W., Factor Analysis: Statistical Methods and Practical Issues. Sage Publications, 1978.

    Google Scholar 

  • Maimon O., and Rokach, L. Data Mining by Attribute Decomposition with semiconductors manufacturing case study, in Data Mining for Design and Manufacturing: Methods and Applications, D. Braha (ed.), Kluwer Academic Publishers, pp. 311–336, 2001.

    Google Scholar 

  • Maimon O. and Rokach L., “Improving supervised learning by feature decomposition”, Proceedings of the Second International Symposium on Foundations of Information and Knowledge Systems, Lecture Notes in Computer Science, Springer, pp. 178-196, 2002.

    Google Scholar 

  • Maimon, O. and Rokach, L., Decomposition Methodology for Knowledge Discovery and Data Mining: Theory and Applications, Series in Machine Perception and Artificial Intelligence - Vol. 61, World Scientific Publishing, ISBN:981-256-079-3, 2005.

    Google Scholar 

  • Mitchell, T., Machine Learning, McGraw-Hill, 1997.

    Google Scholar 

  • Moskovitch R, Elovici Y, Rokach L, Detection of unknown computer worms based on behavioral classification of the host, Computational Statistics and Data Analysis, 52(9):4544–4566, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  • Pfahringer, B., Controlling constructive induction in CiPF, In Bergadano, F. and De Raedt, L. (Eds.), Proceedings of the seventh European Conference on Machine Learning, pp. 242-256, Springer-Verlag, 1994.

    Google Scholar 

  • Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, Los Altos, 1993.

    Google Scholar 

  • Ragavan, H. and Rendell, L., Look ahead feature construction for learning hard concepts. In Proceedings of the Tenth International Machine Learning Conference: pp. 252-259, Morgan Kaufman, 1993.

    Google Scholar 

  • Rastogi, R., and Shim, K., PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning, Data Mining and Knowledge Discovery, 4(4):315-344, 2000.

    Article  MATH  Google Scholar 

  • Rokach, L., Decomposition methodology for classification tasks: a meta decomposer framework, Pattern Analysis and Applications, 9(2006):257–271.

    Article  MathSciNet  Google Scholar 

  • Rokach L., Genetic algorithm-based feature set partitioning for classification problems, Pattern Recognition, 41(5):1676–1700, 2008.

    Article  MATH  Google Scholar 

  • Rokach L., Mining manufacturing data using genetic algorithm-based feature set decomposition, Int. J. Intelligent Systems Technologies and Applications, 4(1):57-78, 2008.

    Article  Google Scholar 

  • Rokach, L. and Maimon, O., Theory and applications of attribute decomposition, IEEE International Conference on Data Mining, IEEE Computer Society Press, pp. 473–480, 2001.

    Google Scholar 

  • Rokach L. and Maimon O., Feature Set Decomposition for Decision Trees, Journal of Intelligent Data Analysis, Volume 9, Number 2, 2005b, pp 131–158.

    Google Scholar 

  • Rokach, L. and Maimon, O., Clustering methods, Data Mining and Knowledge Discovery Handbook, pp. 321–352, 2005, Springer.

    Google Scholar 

  • Rokach, L. and Maimon, O., Data mining for improving the quality of manufacturing: a feature set decomposition approach, Journal of Intelligent Manufacturing, 17(3):285–299, 2006, Springer.

    Article  Google Scholar 

  • Rokach, L., Maimon, O., Data Mining with Decision Trees: Theory and Applications,World Scientific Publishing, 2008.

    Google Scholar 

  • Rokach L., Maimon O. and Lavi I., Space Decomposition In Data Mining: A Clustering Approach, Proceedings of the 14th International Symposium On Methodologies For Intelligent Systems, Maebashi, Japan, Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 24–31.

    Google Scholar 

  • Rokach, L. and Maimon, O. and Averbuch, M., Information Retrieval System for Medical Narrative Reports, Lecture Notes in Artificial intelligence 3055, page 217-228 Springer-Verlag, 2004.

    Google Scholar 

  • Rokach, L. and Maimon, O. and Arbel, R., Selective voting-getting more for less in sensor fusion, International Journal of Pattern Recognition and Artificial Intelligence 20 (3) (2006), pp. 329–350.

    Article  Google Scholar 

  • Schapire R., Singer Y., Boostexter: a boosting-based system for text categorization, Machine Learning 39 (2/3):135168, 2000.

    Article  Google Scholar 

  • Schmitt , M., On the complexity of computing and learning with multiplicative neural networks, Neural Computation 14: 2, 241-301, 2002.

    Article  MATH  Google Scholar 

  • Shafer, J. C., Agrawal, R. and Mehta, M. , SPRINT: A Scalable Parallel Classifier for Data Mining, Proc. 22nd Int. Conf. Very Large Databases, T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda (eds), 544-555, Morgan Kaufmann, 1996.

    Google Scholar 

  • Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM 1984, pp. 1134-1142.

    Google Scholar 

  • Vapnik, V.N., The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  • Wolpert, D. H., The relationship between PAC, the statistical physics framework, the Bayesian framework, and the VC framework. In D. H. Wolpert, editor, The Mathematics of Generalization, The SFI Studies in the Sciences of Complexity, pages 117-214. AddisonWesley, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lior Rokach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rokach, L., Maimon, O. (2009). Supervised Learning. In: Maimon, O., Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09823-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09823-4_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09822-7

  • Online ISBN: 978-0-387-09823-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics