Skip to main content

Spatio-temporal clustering

  • Chapter
  • First Online:
Data Mining and Knowledge Discovery Handbook

Summary

Spatio-temporal clustering is a process of grouping objects based on their spatial and temporal similarity. It is relatively new subfield of data mining which gained high popularity especially in geographic information sciences due to the pervasiveness of all kinds of location-based or environmental devices that record position, time or/and environmental properties of an object or set of objects in real-time. As a consequence, different types and large amounts of spatio-temporal data became available that introduce new challenges to data analysis and require novel approaches to knowledge discovery. In this chapter we concentrate on the spatio-temporal clustering in geographic space. First, we provide a classification of different types of spatio-temporal data. Then, we focus on one type of spatio-temporal clustering - trajectory clustering, provide an overview of the state-of-the-art approaches and methods of spatio-temporal clustering and finally present several scenarios in different application domains such as movement, cellular networks and environmental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal R, Faloutsos C, Swami AN (1993) Efficient Similarity Search In Sequence Databases. In: Lomet D (ed) Proceedings of the 4th International Conference of Foundations of Data Organization and Algorithms (FODO), Springer Verlag, Chicago, Illinois, pp 69–84

    Google Scholar 

  • Alon J, Sclaroff S, Kollios G, Pavlovic V (2003) Discovering clusters in motion time-series data. In: CVPR (1), pp 375–381

    Google Scholar 

  • Alvares LO, Bogorny V, Kuijpers B, de Macedo JAF, Moelans B, Vaisman A (2007) A model for enriching trajectories with semantic geographical information. In: GIS ’07: Proceedings of the 15th annual ACM international symposium on Advances in geographic information systems, pp 1–8

    Google Scholar 

  • Andrienko G, Andrienko N (2008) Spatio-temporal aggregation for visual analysis of movements. In: Proceedings of IEEE Symposium on Visual Analytics Science and Technology (VAST 2008), IEEE Computer Society Press, pp 51–58

    Google Scholar 

  • Andrienko G, Andrienko N (2009) Interactive cluster analysis of diverse types of spatiotemporal data. ACM SIGKDD Explorations

    Google Scholar 

  • Andrienko G, Andrienko N (2010) Spatial generalization and aggregation of massive movement data. IEEE Transactions on Visualization and Computer Graphics (TVCG) Accepted

    Google Scholar 

  • Andrienko G, Andrienko N, Wrobel S (2007) Visual analytics tools for analysis of movement data. SIGKDD Explorations Newsletter 9(2):38–46

    Article  Google Scholar 

  • Andrienko G, Andrienko N, Rinzivillo S, Nanni M, Pedreschi D, Giannotti F (2009) Interactive Visual Clustering of Large Collections of Trajectories. VAST 2009

    Google Scholar 

  • Andrienko N, Andrienko G (2006) Exploratory analysis of spatial and temporal data: a systematic approach. Springer Verlag

    Google Scholar 

  • Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics: ordering points to identify the clustering structure. SIGMOD Rec 28(2):49–60

    Article  Google Scholar 

  • Baglioni M, Antonio Fernandes de Macedo J, Renso C, Trasarti R, Wachowicz M (2009) Towards semantic interpretation of movement behavior. Advances in GIScience pp 271– 288

    Google Scholar 

  • Berndt DJ, Clifford J (1996) Finding patterns in time series: a dynamic programming approach. Advances in knowledge discovery and data mining pp 229–248

    Google Scholar 

  • Birant D, Kut A (2006) An algorithm to discover spatialtemporal distributions of physical seawater characteristics and a case study in turkish seas. Journal of Marine Science and Technology pp 183–192

    Google Scholar 

  • Birant D, Kut A (2007) St-dbscan: An algorithm for clustering spatial-temporal data. Data Knowl Eng 60(1):208–221

    Article  Google Scholar 

  • Chan KP, chee Fu AW (1999) Efficient time series matching by wavelets. In: In ICDE, pp 126–133

    Google Scholar 

  • Chen L, O¨ zsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In: SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, ACM, New York, NY, USA, pp 491–502

    Google Scholar 

  • Chudova D, Gaffney S, Mjolsness E, Smyth P (2003) Translation-invariant mixture models for curve clustering. In: KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA, pp 79–88

    Google Scholar 

  • Ciaccia P, Patella M, Zezula P (1997) M-tree: An efficient access method for similarity search in metric spaces. In: Jarke M, Carey M, Dittrich KR, Lochovsky F, Loucopoulos P, Jeusfeld MA (eds) Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB’97), Morgan Kaufmann Publishers, Inc., Athens, Greece, pp 426–435

    Google Scholar 

  • Cohen S., Rokach L., Maimon O., Decision Tree Instance Space Decomposition with Grouped Gain-Ratio, Information Science, Volume 177, Issue 17, pp. 3592-3612, 2007.

    Article  Google Scholar 

  • Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Data Mining and Knowledge Discovery pp 226–231

    Google Scholar 

  • Fosca G, Dino P (2008) Mobility, Data Mining and Privacy: Geographic Knowledge Discovery. Springer

    Google Scholar 

  • Frentzos E, Gratsias K, Theodoridis Y (2007) Index-based most similar trajectory search. In: ICDE, pp 816–825

    Google Scholar 

  • Gaffney S, Smyth P (1999) Trajectory clustering with mixtures of regression models. In: KDD ’99: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA, pp 63–72

    Google Scholar 

  • Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, p 339

    Google Scholar 

  • Grinstein G, Plaisant C, Laskowski S, OConnell T, Scholtz J, Whiting M (2008) VAST 2008 Challenge: Introducing mini-challenges. In: Proceedings of IEEE Symposium, vol 1, pp 195–196

    Google Scholar 

  • Gudmundsson J, van KreveldM(2006) Computing longest duration flocks in trajectory data. In: GIS ’06: Proceedings of the 14th annual ACM international symposium on Advances in geographic information systems, ACM, New York, NY, USA, pp 35–42

    Google Scholar 

  • Hwang SY, Liu YH, Chiu JK, Lim EP (2005) Mining mobile group patterns: A trajectorybased approach. In: PAKDD, pp 713–718

    Google Scholar 

  • Iyengar VS (2004) On detecting space-time clusters. In: Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining (KDD’04), ACM, pp 587–592

    Google Scholar 

  • Jeung H, Yiu ML, Zhou X, Jensen CS, Shen HT (2008) Discovery of convoys in trajectory databases. Proc VLDB Endow 1(1):1068–1080

    Google Scholar 

  • Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. Advances in Spatial and Temporal Databases pp 364–381

    Google Scholar 

  • Kang J, Yong HS (2009) Mining Trajectory Patterns by Incorporating Temporal Properties. Proceedings of the 1st International Conference on Emerging Databases

    Google Scholar 

  • Kang JH, Welbourne W, Stewart B, Borriello G (2004) Extracting places from traces of locations. In: WMASH ’04: Proceedings of the 2nd ACM international workshop on Wireless mobile applications and services on WLAN hotspots, ACM, New York, NY, USA, pp 110–118

    Google Scholar 

  • Kisilevich S, Keim D, Rokach L (2010) A novel approach to mining travel sequences using collections of geo-tagged photos. In: The 13th AGILE International Conference on Geographic Information Science

    Google Scholar 

  • Kulldorff M (1997) A spatial scan statistic. Communications in Statistics: Theory and Methods 26(6):1481–1496

    Article  MATH  MathSciNet  Google Scholar 

  • Lee JG, Han J, Whang KY (2007) Trajectory clustering: a partition-and-group framework. In: SIGMOD Conference, pp 593–604

    Google Scholar 

  • Li Y, Han J, Yang J (2004a) Clustering moving objects. In: Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining (KDD’04), ACM, pp 617–622

    Google Scholar 

  • Li Y, Han J, Yang J (2004b) Clustering moving objects. In: KDD, pp 617–622

    Google Scholar 

  • Maimon O., and Rokach, L. Data Mining by Attribute Decomposition with semiconductors manufacturing case study, in Data Mining for Design and Manufacturing: Methods and Applications, D. Braha (ed.), Kluwer Academic Publishers, pp. 311–336, 2001.

    Google Scholar 

  • Miller HJ, Han J (2009) Geographic data mining and knowledge discovery. Chapman & Hall/CRC

    Google Scholar 

  • Nanni M, Pedreschi D (2006) Time-focused clustering of trajectories of moving objects. Journal of Intelligent Information Systems 27(3):267–289

    Article  Google Scholar 

  • Palma AT, Bogorny V, Kuijpers B, Alvares LO (2008) A clustering-based approach for discovering interesting places in trajectories. In: SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing, pp 863–868

    Google Scholar 

  • Pelekis N, Kopanakis I, Marketos G, Ntoutsi I, Andrienko G, Theodoridis Y (2007) Similarity search in trajectory databases. In: TIME ’07: Proceedings of the 14th International Symposium on Temporal Representation and Reasoning, IEEE Computer Society, Washington, DC, USA, pp 129–140

    Google Scholar 

  • Reades J, Calabrese F, Sevtsuk A, Ratti C (2007) Cellular census: Explorations in urban data collection. IEEE Pervasive Computing 6(3):30–38

    Article  Google Scholar 

  • Rinzivillo S, Pedreschi D, Nanni M, Giannotti F, Andrienko N, Andrienko G (2008) Visually driven analysis of movement data by progressive clustering. Information Visualization 7(3):225–239

    Article  Google Scholar 

  • Rokach L. and Maimon O., Feature Set Decomposition for Decision Trees, Journal of Intelligent Data Analysis, Volume 9, Number 2, 2005b, pp 131–158.

    Google Scholar 

  • Rokach L., Genetic algorithm-based feature set partitioning for classification problems, Pattern Recognition, 41(5):1676–1700, 2008.

    Article  MATH  Google Scholar 

  • Rokach L., Maimon O. and Lavi I., Space Decomposition In Data Mining: A Clustering Approach, Proceedings of the 14th International Symposium On Methodologies For Intelligent Systems, Maebashi, Japan, Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 24–31.

    Google Scholar 

  • Schilit BN, LaMarca A, Borriello G, Griswold WG, McDonald D, Lazowska E, Balachandran A, Hong J, Iverson V (2003) Challenge: ubiquitous location-aware computing and the ”place lab” initiative. In: WMASH ’03: Proceedings of the 1st ACM international workshop onWireless mobile applications and services on WLAN hotspots, ACM, New York, NY, USA, pp 29–35

    Google Scholar 

  • Stolorz P, Nakamura H, Mesrobian E, Muntz RR, Santos JR, Yi J, Ng K (1995) Fast spatiotemporal data mining of large geophysical datasets. In: Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD’95), AAAI Press, pp 300–305

    Google Scholar 

  • Theodoridis Y (2003) Ten benchmark database queries for location-based services. The Computer Journal 46(6):713–725

    Article  MATH  Google Scholar 

  • Vieira MR, Bakalov P, Tsotras VJ (2009) On-line discovery of flock patterns in spatiotemporal data. In: GIS ’09: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, New York, NY, USA, pp 286–295

    Google Scholar 

  • Vlachos M, Kollios G, Gunopulos D (2002) Discovering similar multidimensional trajectories. In: Proceedings of the International Conference on Data Engineering, pp 673–684

    Google Scholar 

  • Vlachos M, Hadjieleftheriou M, Gunopulos D, Keogh E (2003) Indexing multi-dimensional time-series with support for multiple distance measures. In: KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA, pp 216–225

    Google Scholar 

  • Wang M, Wang A, Li A (2006) Mining Spatial-temporal Clusters from Geo-databases. Lecture Notes in Computer Science 4093:263

    Google Scholar 

  • Zhang P, Huang Y, Shekhar S, Kumar V (2003) Correlation analysis of spatial time series datasets: A filter-and-refine approach. In: In the Proc. of the 7th PAKDD

    Google Scholar 

  • Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. ACM SIGMOD Record 25(2):103–114

    Article  Google Scholar 

  • Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining interesting locations and travel sequences from gps trajectories. In: WWW ’09: Proceedings of the 18th international conference on World wide web, pp 791–800

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slava Kisilevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S. (2009). Spatio-temporal clustering. In: Maimon, O., Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09823-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09823-4_44

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09822-7

  • Online ISBN: 978-0-387-09823-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics