Mining Multi-label Data

  • Grigorios Tsoumakas
  • Ioannis Katakis
  • Ioannis Vlahavas
Chapter

Abstract

A large body of research in supervised learning deals with the analysis of single-label data, where training examples are associated with a single label λ from a set of disjoint labels L. However, training examples in several application domains are often associated with a set of labels Y ⊆ L. Such data are called multi-label.

Textual data, such as documents and web pages, are frequently annotated with more than a single label. For example, a news article concerning the reactions of the Christian church to the release of the “Da Vinci Code” film can be labeled as both religion and movies. The categorization of textual data is perhaps the dominant multi-label application.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barutcuoglu, Z., Schapire, R. E. & Troyanskaya, O. G. (2006). Bioinformatics 22, 830–836.CrossRefGoogle Scholar
  2. Blockeel, H., Schietgat, L., Struyf, J., Dz?eroski, S. & Clare, A. (2006). Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4213 LNAI, 18–29.Google Scholar
  3. Boleda, G., im Walde, S. S. & Badia, T. (2007). In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning pp. 171–180,, Prague.Google Scholar
  4. Boutell, M., Luo, J., Shen, X. & Brown, C. (2004). Pattern Recognition 37, 1757–1771.CrossRefGoogle Scholar
  5. Brinker, K., Fürnkranz, J. & Hüllermeier, E. (2006). In Proceedings of the 17th European Conference on Artificial Intelligence (ECAI ’06) pp. 489–493„ Riva del Garda, Italy.Google Scholar
  6. Brinker, K. & Hüllermeier, E. (2007). In Proceedings of the 20th International Conference on Artificial Intelligence (IJCAI ’07) pp. 702–707„ Hyderabad, India.Google Scholar
  7. Caruana, R. (1997). Machine Learning 28, 41–75.CrossRefGoogle Scholar
  8. Cesa-Bianchi, N., Gentile, C. & Zaniboni, L. (2006a). In ICML ’06: Proceedings of the 23rd international conference on Machine learning pp. 177–184,.Google Scholar
  9. Cesa-Bianchi, N., Gentile, C.& Zaniboni, L. (2006b). Journal of Machine Learning Research 7, 31–54.MathSciNetGoogle Scholar
  10. Chang, C.-C. & Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  11. Chawla, N. V., Japkowicz, N. & Kotcz, A. (2004). SIGKDD Explorations 6, 1–6.CrossRefGoogle Scholar
  12. Chen, W., Yan, J., Zhang, B., Chen, Z. & Yang, Q. (2007). In Proc. 7th IEEE International Conference on Data Mining pp. 451–456, IEEE Computer Society, Los Alamitos, CA, USA.Google Scholar
  13. Clare, A. & King, R. (2001). In Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2001) pp. 42–53„ Freiburg, Germany.Google Scholar
  14. Crammer, K. & Singer, Y. (2003). Journal of Machine Learning Research 3, 1025–1058.MATHCrossRefMathSciNetGoogle Scholar
  15. de Comite, F., Gilleron, R. & Tommasi, M. (2003). In Proceedings of the 3rd International Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM 2003) pp. 35–49„ Leipzig, Germany.Google Scholar
  16. Diplaris, S., Tsoumakas, G., Mitkas, P. & Vlahavas, I. (2005). In Proceedings of the 10th Panhellenic Conference on Informatics (PCI 2005) pp. 448–456„ Volos, Greece.Google Scholar
  17. Elisseeff, A. & Weston, J. (2002). In Advances in Neural Information Processing Systems 14.Google Scholar
  18. Esuli, A., Fagni, T. & Sebastiani, F. (2008). Information Retrieval 11, 287–313.CrossRefGoogle Scholar
  19. Fürnkranz, J., Hüllermeier, E., Mencia, E. L. & Brinker, K. (2008). Machine Learning .Google Scholar
  20. Gao, S., Wu, W., Lee, C.-H. & Chua, T.-S. (2004). In Proceedings of the 21st international conference on Machine learning (ICML ’04) p. 42„ Banff, Alberta, Canada.Google Scholar
  21. Ghamrawi, N. & McCallum, A. (2005). In Proceedings of the 2005 ACM Conference on Information and Knowledge Management (CIKM ’05) pp. 195–200„ Bremen, Germany.Google Scholar
  22. Godbole, S. & Sarawagi, S. (2004). In Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2004) pp. 22–30,.Google Scholar
  23. Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K., Lewis, S., Marshall, B., Mungall, C., Richter, J., Rubin, G. M., Blake, J. A., Bult, C., Dolan, M., Drabkin, H., Eppig, J. T., Hill, D. P., Ni, L., Ringwald, M., Balakrishnan, R., Cherry, J. M., Christie, K. R., Costanzo, M. C., Dwight, S. S., Engel, S., Fisk, D. G., Hirschman, J. E., Hong, E. L., Nash, R. S., Sethuraman, A., Theesfeld, C. L., Botstein, D., Dolinski, K., Feierbach, B., Berardini, T., Mundodi, S., Rhee, S. Y., Apweiler, R., Barrell, D., Camon, E., Dimmer, E., Lee, V., Chisholm, R., Gaudet, P., Kibbe, W., Kishore, R., Schwarz, E. M., Sternberg, P., Gwinn, M., Hannick, L., Wortman, J., Berriman, M., Wood, V., de La, Tonellato, P., Jaiswal, P., Seigfried, T. & White, R. (2004). Nucleic Acids Res 32.Google Scholar
  24. Hüllermeier, E., Fürnkranz, J., Cheng, W. & Brinker, K. (2008). Artificial Intelligence 172, 1897–1916.MATHCrossRefMathSciNetGoogle Scholar
  25. Ji, S., Tang, L., Yu, S. & Ye, J. (2008). In Proceedings of the 14th SIGKDD International Conferece on Knowledge Discovery and Data Mining, Las Vegas, USA.Google Scholar
  26. Jin, R. & Ghahramani, Z. (2002). In Proceedings of Neural Information Processing Systems 2002 (NIPS 2002), Vancouver, Canada.Google Scholar
  27. Katakis, I., Tsoumakas, G. & Vlahavas, I. (2008). In Proceedings of the ECML/PKDD 2008 Discovery Challenge, Antwerp, Belgium.Google Scholar
  28. Kohavi, R. & John, G. H. (1997). Artificial Intelligence 97, 273–324.MATHCrossRefGoogle Scholar
  29. Lewis, D. D., Yang, Y., Rose, T. G. & Li, F. (2004). J. Mach. Learn. Res. 5, 361–397.Google Scholar
  30. Li, T. & Ogihara, M. (2003). In Proceedings of the International Symposium on Music Information Retrieval pp. 239–240„ Washington D.C., USA.Google Scholar
  31. Li, T. & Ogihara, M. (2006). IEEE Transactions on Multimedia 8, 564–574.CrossRefGoogle Scholar
  32. Loza Mencia, E. & Fürnkranz, J. (2008a). In 2008 IEEE International Joint Conference on Neural Networks (IJCNN-08) pp. 2900–2907„ Hong Kong.Google Scholar
  33. Loza Mencia, E. & Fürnkranz, J. (2008b). In 12th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2008 pp. 50–65„ Antwerp, Belgium.Google Scholar
  34. Luo, X. & Zincir-Heywood, A. (2005). In Proceedings of the 15th International Symposium on Methodologies for Intelligent Systems pp. 161–169,.Google Scholar
  35. Maron, O. & p Erez, T. A. L. (1998). In Advances in Neural Information Processing Systems 10 pp. 570–576, MIT Press.Google Scholar
  36. McCallum, A. (1999). In Proceedings of the AAAI’ 99 Workshop on Text Learning.Google Scholar
  37. Mencia, E. L. & Fürnkranz, J. (2008). In 12th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2008, Antwerp, Belgium.Google Scholar
  38. Moskovitch, R., Cohenkashi, S., Dror, U., Levy, I., Maimon, A. & Shahar, Y. (2006). Artificial Intelligence in Medicine 37, 177–190.CrossRefGoogle Scholar
  39. Park, C. H. & Lee, M. (2008). Pattern Recogn. Lett. 29, 878–887.CrossRefGoogle Scholar
  40. Pestian, J. P., Brew, C., Matykiewicz, P., Hovermale, D. J., Johnson, N., Cohen, K. B. & Duch, W. (2007). In BioNLP ’07: Proceedings of the Workshop on BioNLP 2007 pp. 97–104, Association for Computational Linguistics, Morristown, NJ, USA.Google Scholar
  41. Qi, G.-J., Hua, X.-S., Rui, Y., Tang, J., Mei, T. & Zhang, H.-J. (2007). In MULTIMEDIA ’07: Proceedings of the 15th international conference on Multimedia pp. 17–26, ACM, New York, NY, USA.Google Scholar
  42. Read, J. (2008). In Proc. 2008 New Zealand Computer Science Research Student Conference (NZCSRS 2008) pp. 143–150,.Google Scholar
  43. Rokach L., Genetic algorithm-based feature set partitioning for classification problems, Pattern Recognition, 41(5):1676–1700, 2008.MATHCrossRefGoogle Scholar
  44. Rokach L., Mining manufacturing data using genetic algorithm-based feature set decomposition, Int. J. Intelligent Systems Technologies and Applications, 4(1):57-78, 2008.CrossRefGoogle Scholar
  45. Rokach L., Maimon O. and Lavi I., Space Decomposition In Data Mining: A Clustering Approach, Proceedings of the 14th International Symposium On Methodologies For Intelligent Systems, Maebashi, Japan, Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 24–31.Google Scholar
  46. Rousu, J., Saunders, C., Szedmak, S. & Shawe-Taylor, J. (2006). Journal of Machine Learning Research 7, 1601–1626.MathSciNetGoogle Scholar
  47. Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko, I., Güldener, U., Mannhaupt, G., Münsterkötter, M. & Mewes, H. W. (2004). Nucleic Acids Res 32, 5539–5545.CrossRefGoogle Scholar
  48. Schapire, R.E. Singer, Y. (2000). Machine Learning 39, 135–168.MATHCrossRefGoogle Scholar
  49. Snoek, C. G. M.,Worring, M., van Gemert, J. C., Geusebroek, J.-M. & Smeulders, A.W. M. (2006). In MULTIMEDIA ’06: Proceedings of the 14th annual ACM international conference on Multimedia pp. 421–430, ACM, New York, NY, USA.Google Scholar
  50. Spyromitros, E., Tsoumakas, G. & Vlahavas, I. (2008). In Proc. 5th Hellenic Conference on Artificial Intelligence (SETN 2008).Google Scholar
  51. Srivastava, A. & Zane-Ulman, B. (2005). In IEEE Aerospace Conference.Google Scholar
  52. Streich, A. P. & Buhmann, J. M. (2008). In 12th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2008, Antwerp, Belgium.Google Scholar
  53. Sun, A. & Lim, E.-P. (2001). In ICDM ’01: Proceedings of the 2001 IEEE International Conference on Data Mining pp. 521–528, IEEE Computer Society, Washington, DC, USA.Google Scholar
  54. Sun, L., Ji, S. & Ye, J. (2008). In Proceedings of the 14th SIGKDD International Conferece on Knowledge Discovery and Data Mining, Las Vegas, USA.Google Scholar
  55. Thabtah, F., Cowling, P. & Peng, Y. (2004). In Proceedings of the 4th IEEE International Conference on Data Mining, ICDM ’04 pp. 217–224,.Google Scholar
  56. Trohidis, K., Tsoumakas, G., Kalliris, G. & Vlahavas, I. (2008). In Proc. 9th International Conference on Music Information Retrieval (ISMIR 2008), Philadelphia, PA, USA, 2008.Google Scholar
  57. Tsoumakas, G. & Katakis, I. (2007). International Journal of Data Warehousing and Mining 3, 1–13.Google Scholar
  58. Tsoumakas, G., Katakis, I. & Vlahavas, I. (2008). In Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD’08) pp. 30–44,.Google Scholar
  59. Tsoumakas, G. & Vlahavas, I. (2007). In Proceedings of the 18th European Conference on Machine Learning (ECML 2007) pp. 406–417„ Warsaw, Poland.Google Scholar
  60. Ueda, N. & Saito, K. (2003). Advances in Neural Information Processing Systems 15 , 721–728.Google Scholar
  61. Veloso, A., Wagner, M. J., Goncalves, M. & Zaki, M. (2007). In Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2007) vol. LNAI 4702, pp. 605–612, Springer, Warsaw, Poland.Google Scholar
  62. Vembu, S. & Gärtner, T. (2009). In Preference Learning, (Fürnkranz, J. & Hüllermeier, E., eds),. Springer.Google Scholar
  63. Vens, C., Struyf, J., Schietgat, L., Džeroski, S. & Blockeel, H. (2008). Machine Learning 73, 185–214.CrossRefGoogle Scholar
  64. Wieczorkowska, A., Synak, P. & Ras, Z. (2006). In Proceedings of the 2006 International Conference on Intelligent Information Processing and Web Mining (IIPWM’06) pp. 307–315,.Google Scholar
  65. Wolpert, D. (1992). Neural Networks 5, 241–259.CrossRefGoogle Scholar
  66. Yang, S., Kim, S.-K. & Ro, Y. M. (2007). Circuits and Systems for Video Technology, IEEE Transactions on 17, 324–335.Google Scholar
  67. Yang, Y. (1999). Journal of Information Retrieval 1, 67–88.Google Scholar
  68. Yang, Y. & Pedersen, J. O. (1997). In Proceedings of ICML-97, 14th International Conference on Machine Learning, (Fisher, D. H., ed.), pp. 412–420, Morgan Kaufmann Publishers, San Francisco, US, Nashville, US.Google Scholar
  69. Yu, K., Yu, S. & Tresp, V. (2005). In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval pp. 258– 265, ACM Press, Salvador, Brazil.Google Scholar
  70. Zha, Z.-J., Hua, X.-S., Mei, T., Wang, J., Qi, G.-J. & Wang, Z. (2008). In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on pp. 1–8,.Google Scholar
  71. Zhang, M.-L.&Zhou, Z.-H. (2006). IEEE Transactions on Knowledge and Data Engineering 18, 1338–1351.CrossRefGoogle Scholar
  72. Zhang, M.-L. & Zhou, Z.-H. (2007a). Pattern Recognition 40, 2038–2048.MATHCrossRefGoogle Scholar
  73. Zhang, M.-L. & Zhou, Z.-H. (2007b). In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence pp. 669–674, AAAI Press, Vancouver, Britiths Columbia, Canada.Google Scholar
  74. Zhang, Y., Burer, S. & Street, W. N. (2006). Journal of Machine Learning Research 7, 1315–1338.MathSciNetGoogle Scholar
  75. Zhang, Y. & Zhou, Z.-H. (2008). In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008 pp. 1503–1505, AAAI Press, Chicago, Illinois, USA.Google Scholar
  76. Zhou, Z.-H. (2007). In Proceedings of the 3rd International Conference on Advanced Data Mining and Applications (ADMA’07) p. 1. Springer.Google Scholar
  77. Zhou, Z. H. & Zhang, M. L. (2006). In NIPS, (Schölkopf, B., Platt, J. C. & Hoffman, T., eds), pp. 1609–1616, MIT Press.Google Scholar
  78. Zhu, S., Ji, X., Xu, W. & Gong, Y. (2005). In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in Information Retrieval pp. 274– 281.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Grigorios Tsoumakas
    • 1
  • Ioannis Katakis
    • 1
  • Ioannis Vlahavas
    • 1
  1. 1.Dept. of InformaticsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations