Skip to main content

A Review of Evolutionary Algorithms for Data Mining

  • Chapter
  • First Online:

Summary

Evolutionary Algorithms (EAs) are stochastic search algorithms inspired by the process of neo-Darwinian evolution. The motivation for applying EAs to data mining is that they are robust, adaptive search techniques that perform a global search in the solution space. This chapter first presents a brief overview of EAs, focusing mainly on two kinds of EAs, viz. Genetic Algorithms (GAs) and Genetic Programming (GP). Then the chapter reviews the main concepts and principles used by EAs designed for solving several data mining tasks, namely: discovery of classification rules, clustering, attribute selection and attribute construction. Finally, it discusses Multi-Objective EAs, based on the concept of Pareto dominance, and their use in several data mining tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldenderfer MS & Blashfield RK (1984) Cluster Analysis (Sage University Paper Series on Quantitative Applications in the Social Sciences, No. 44) Sage Publications.

    Google Scholar 

  • Atkinson-Abutridy J, Mellishm C, and Aitken S (2003) A semantically guided and domainindependent evolutionary model for knowledge discovery from texts. IEEE Trans. Evolutionary Computation 7(6), 546-560.

    Article  Google Scholar 

  • Bacardit J, Goldberg DE, Butz MV, Llora X, Garrell JM (2004). Speeding-up Pittsburgh learning classifier systems: modeling time and accuracy. Proc. Parallel Problem Solving From Nature (PPSN-2004), LNCS 3242, 1021-1031, Springer.

    Google Scholar 

  • Bacardit J and Krasnogor N (2006) Smart crossover operator with multiple parents for a Pittsburgh learning classifier system. Proc. Genetic & Evolutionary Computation Conf. (GECCO-2006), 1441-1448. Morgan Kaufmann.

    Google Scholar 

  • Backer E (1995) Computer-Assisted Reasoning in Cluster Analysis. Prentice-Hall.

    Google Scholar 

  • Back T, Fogel DB and Michalewicz (Eds.) (2000) Evolutionary Computation 1: Basic Algorithms and Operators. Institute of Physics Publishing.

    Google Scholar 

  • Bala J, De Jong K, Huang J, Vafaie H and Wechsler H (1995) Hybrid learning using genetic algorithms and decision trees for pattern classification. Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI-95), 719-724.

    Google Scholar 

  • Bala J, De Jong K, Huang J, Vafaie H and Wechsler H (1996) Using learning to facilitate the evolution of features for recognizing visual concepts. Evolutionary Computation 4(3):297-312.

    Article  Google Scholar 

  • Banzhaf W (2000) Interactive evolution. In: T. Back, D.B. Fogel and T. Michalewicz (Eds.) Evolutionary Computation 1, 228-236. Institute of Physics Pub.

    Google Scholar 

  • Banzhaf W, Nordin P, Keller RE, and Francone FD (1998) Genetic Programming ∼ an Introduction: On the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann.

    Google Scholar 

  • Bhattacharrya S (1998) Direct marketing response models using genetic algorithms. Proceedings of the 4th Int. Conf. on Knowledge Discovery and Data Mining (KDD-98), 144-148. AAAI Press.

    Google Scholar 

  • Brachman RJ and Anand T. (1996) The process of knowledge discovery in databases: a human-centered approach. In: U.M. Fayyad et al (Eds.) Advances. in Knowledge Discovery and Data Mining, 37-58. AAAI/MIT.

    Google Scholar 

  • Bull L (Ed.) (2004) Applications of Learning Classifier Systems. Springer.

    Google Scholar 

  • Bull L and Kovacs T (Eds.) (2005) Foundations of Learning Classifier Systems. Springer.

    Google Scholar 

  • Cantu-Paz E (2000) Efficient and Accurate Parallel Genetic Algorithms. Kluwer.

    Google Scholar 

  • Caruana R and Niculescu-Mizil A (2004) Data mining in metric space: an empirical analysis of supervised learning performance criteria. Proc. 2004 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD-04), ACM.

    Google Scholar 

  • Carvalho DR and Freitas AA (2004). A hybrid decision tree/genetic algorithm method for data mining. Special issue on Soft Computing Data Mining, Information Sciences 163(1-3), pp. 13-35. 14 June 2004.

    Google Scholar 

  • Chen S, Guerra-Salcedo C and Smith SF (1999) Non-standard crossover for a standard representation - commonality-based feature subset selection. Proc. Genetic and Evolutionary Computation Conf. (GECCO-99), 129-134. Morgan Kaufmann.

    Google Scholar 

  • Cherkauer KJ and Shavlik JW (1996). Growing simpler decision trees to facilitate knowledge discovery. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD-96), 315-318. AAAI Press.

    Google Scholar 

  • Coello Coello CA, Van Veldhuizen DA and Lamont GB (2002) Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer.

    Google Scholar 

  • Coello Coello CA and Lamont GB (Ed.) (2004) Applications of Multi-objective Evolutionary Algorithms. World Scientific.

    Google Scholar 

  • Deb K (2001) Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.

    Google Scholar 

  • Deb K and Goldberg DE (1989). An investigation of niche and species formation in genetic function optimization. Proc. 2nd Int. Conf. Genetic Algorithms (ICGA-89), 42-49.

    Google Scholar 

  • De Jong K (2006) Evolutionary Computation: a unified approach. MIT.

    Google Scholar 

  • De la Iglesia B (2007) Application of multi-objective metaheuristic algorithms in data mining. Proc. 3rd UK Knowledge Discovery and Data Mining Symposium (UKKDD-2007), 39-44, University of Kent, UK, April 2007.

    Google Scholar 

  • Dhar V, Chou D and Provost F (2000). Discovering interesting patterns for investment decision making with GLOWER – a genetic learner overlaid with entropy reduction. Data Mining and Knowledge Discovery 4(4), 251-280.

    Article  MATH  Google Scholar 

  • Divina F (2005) Assessing the effectiveness of incorporating knowledge in an evolutionary concept learner. Proc. EuroGP-2005 (European Conf. on Genetic Programming), LNCS 3447, 13-24, Springer.

    Google Scholar 

  • Divina F & Marchiori E (2002) Evolutionary Concept Learning. Proc. Genetic & Evolutionary Computation Conf. (GECCO-2002), 343-350. Morgan Kaufmann.

    Google Scholar 

  • Divina F & Marchiori E (2005) Handling continuous attributes in an evolutionary inductive learner. IEEE Trans. Evolutionary Computation, 9(1), 31-43, Feb. 2005.

    Article  Google Scholar 

  • Eiben AE and Smith JE (2003) Introduction to Evolutionary Computing. Springer.

    Google Scholar 

  • Emmanouilidis C, Hunter A and J. MacIntyre J (2000) A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator. Proc. 2000 Congress on Evolutionary Computation (CEC-2000), 309-316. IEEE.

    Google Scholar 

  • Emmanouilidis C (2002) Evolutionary multi-objective feature selection and ROC analysis with application to industrial machinery fault diagnosis. In: K. Giannakoglou et al. (Eds.) Evolutionary Methods for Design, Optimisation and Control. Barcelona: CIMNE.

    Google Scholar 

  • Estivill-Castro V and Murray AT (1997) Spatial clustering for data mining with genetic algorithms. Tech. Report FIT-TR-97-10. Queensland University of Technology. Australia.

    Google Scholar 

  • Falkenauer E (1998) Genetic Algorithms and Grouping Problems. John-Wiley & Sons.

    Google Scholar 

  • Fayyad UM, Piatetsky-Shapiro G and Smyth P (1996) From data mining to knowledge discovery: an overview. In: U.M. Fayyad et al (Eds.) Advances in Knowledge Discovery and Data Mining, 1-34. AAAI/MIT.

    Google Scholar 

  • Firpi H, Goodman E, Echauz J (2005) On prediction of epileptic seizures by computing multiple genetic programming artificial features. Proc. 2005 European Conf. on Genetic Programming (EuroGP-2005), LNCS 3447, 321-330. Springer.

    Google Scholar 

  • Folino G, Pizzuti C and Spezzano G (2006) GP ensembles for large-scale data classification. IEEE Trans. Evolutionary Computation 10(5), 604-616, Oct. 2006.

    Article  Google Scholar 

  • Freitas AA and. Lavington SH (1998) Mining Very Large Databases with Parallel Processing. Kluwer.

    Google Scholar 

  • Freitas AA (2001) Understanding the crucial role of attribute interaction in data mining. Artificial Intelligence Review 16(3), 177-199.

    Article  MATH  Google Scholar 

  • Freitas AA (2002a) Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer.

    Google Scholar 

  • Freitas AA (2002b) A survey of evolutionary algorithms for data mining and knowledge discovery. In: A. Ghosh and S. Tsutsui. (Eds.) Advances in Evolutionary Computation, pp. 819-845. Springer-Verlag.

    Google Scholar 

  • Freitas AA (2002c). Evolutionary Computation. In: W. Klosgen and J. Zytkow (Eds.) Handbook of Data Mining and Knowledge Discovery, pp. 698-706.Oxford Univ. Press.

    Google Scholar 

  • Freitas AA (2004) A critical review of multi-objective optimization in data mining: a position paper. ACM SIGKDD Explorations, 6(2), 77-86, Dec. 2004.

    Article  MathSciNet  Google Scholar 

  • Freitas AA (2005) Evolutionary Algorithms for Data Mining. In: O. Maimon and L. Rokach (Eds.) The Data Mining and Knowledge Discovery Handbook, pp. 435-467. Springer.

    Google Scholar 

  • Freitas AA (2006) Are we really discovering ”interesting” knowledge from data? Expert Update, Vol. 9, No. 1, 41-47, Autumn 2006.

    MathSciNet  Google Scholar 

  • Furnkranz J and Flach PA (2003). An analysis of rule evaluation metrics. Proc.20th Int. Conf. Machine Learning (ICML-2003). Morgan Kaufmann.

    Google Scholar 

  • Gathercole C and Ross P (1997) Tackling the Boolean even N parity problem with genetic programming and limited-error fitness. Genetic Programming 1997: Proc. 2nd Conf. (GP-97), 119-127. Morgan Kaufmann.

    Google Scholar 

  • Ghozeil A and Fogel DB (1996) Discovering patterns in spatial data using evolutionary programming. Genetic Programming 1996: Proceedings of the 1st Annual Conf., 521-527. MIT Press.

    Google Scholar 

  • Giordana A, Saitta L, Zini F (2004) Learning disjunctive concepts by means of genetic algorithms. Proc. 10th Int. Conf. Machine Learning (ML-94), 96-104. Morgan Kaufmann.

    Google Scholar 

  • Goldberg DE (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.

    Google Scholar 

  • Goldberg DE and Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization. Proc. Int. Conf. Genetic Algorithms (ICGA-87), 41-49.

    Google Scholar 

  • Guerra-Salcedo C and Whitley D (1998) Genetic search for feature subset selection: a comparison between CHC and GENESIS. Genetic Programming 1998: Proc. 3rd Annual Conf., 504-509. Morgan Kaufmann.

    Google Scholar 

  • Guerra-Salcedo C, Chen S, Whitley D, and Smith S (1999) Fast and accurate feature selection using hybrid genetic strategies. Proc. Congress on Evolutionary Computation (CEC-99), 177-184. IEEE.

    Google Scholar 

  • Guyon I and Elisseeff A (2003) An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157-1182.

    Article  MATH  Google Scholar 

  • Hall LO, Ozyurt IB, Bezdek JC (1999) Clustering with a genetically optimized approach. IEEE Trans. on Evolutionary Computation 3(2), 103-112.

    Article  Google Scholar 

  • Hand DJ (1997) Construction and Assessment of Classification Rules. Wiley.

    Google Scholar 

  • Handl J and Knowles J (2004) Evolutionary multiobjective clustering. Proc. Parallel Problem Solving From Nature (PPSN-2004), LNCS 3242, 1081-1091, Springer.

    Google Scholar 

  • Hekanaho J (1995) Symbiosis in multimodal concept learning. Proc. 1995 Int. Conf. on Machine Learning (ML-95), 278-285. Morgan Kaufmann.

    Google Scholar 

  • Hekanaho J (1996) Testing different sharing methods in concept learning. TUCS Technical Report No. 71. Turku Centre for Computer Science, Finland.

    Google Scholar 

  • Hirsch L, Saeedi M and Hirsch R (2005) Evolving rules for document classification. Proc. 2005 European Conf. on Genetic Programming (EuroGP-2005), LNCS 3447, 85-95, Springer.

    Google Scholar 

  • Hu YJ (1998). A genetic programming approach to constructive induction. Genetic Programming 1998: Proc. 3rd Annual Conf., 146-151. Morgan Kaufmann.

    Google Scholar 

  • Ishibuchi H and Nakashima T (2000) Multi-objective pattern and feature selection by a genetic algorithm. Proc. 2000 Genetic and Evolutionary Computation Conf. (GECCO- 2000), 1069-1076. Morgan Kaufmann.

    Google Scholar 

  • Ishibuchi H and Namba S (2004) Evolutionary multiobjective knowledge extraction for highdimensional pattern classification problems. Proc. Parallel Problem Solving From Nature (PPSN-2004), LNCS 3242, 1123-1132, Springer.

    Google Scholar 

  • Jiao L, Liu J and Zhong W (2006) An organizational coevolutionary algorithm for classification. IEEE Trans. Evolutionary Computation, Vol. 10, No. 1, 67-80, Feb. 2006.

    Article  Google Scholar 

  • Jin, Y (Ed.) (2006) Multi-Objective Machine Learning. Springer.

    Google Scholar 

  • Jong K, Marchiori E and SebagM(2004) Ensemble learning with evolutionary computation: application to feature ranking. Proc. Parallel Problem Solving from Nature VIII (PPSN- 2004), LNCS 3242, 1133-1142. Springer, 2004.

    Google Scholar 

  • Jourdan L, Dhaenens-Flipo C and Talbi EG (2003) Discovery of genetic and environmental interactions in disease data using evolutionary computation. In: G.B. Fogel and D.W. Corne (Eds.) Evolutionary Computation in Bioinformatics, 297-316. Morgan Kaufmann.

    Google Scholar 

  • Kim Y, Street WN and Menczer F (2000) Feature selection in unsupervised learning via evolutionary search. Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD-2000), 365-369. ACM.

    Google Scholar 

  • Kim D (2004). Structural risk minimization on decision trees: using an evolutionary multiobjective algorithm. Proc. 2004 European Conference on Genetic Programming (EuroGP- 2004), LNCS 3003, 338-348, Springer.

    Google Scholar 

  • Korkmaz EE, Du J, Alhajj R and Barker (2006) Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering. Intelligent Data Analysis 10 (2006), 163-182.

    Google Scholar 

  • Koza JR (1992) Genetic Programming: on the programming g of computers by means of natural selection. MIT Press.

    Google Scholar 

  • Krawiec K (2002) Genetic programming-based construction of features for machine learning and knowledge discovery tasks. Genetic Programming and Evolvable Machines 3(4), 329-344.

    Article  MATH  Google Scholar 

  • Krsihma K and Murty MN (1999) Genetic k-means algorithm. IEEE Transactions on Systems, Man and Cyberneics - Part B: Cybernetics, 29(3), 433-439.

    Article  Google Scholar 

  • Krzanowski WJ and Marriot FHC (1995) Kendall’s Library of Statistics 2: Multivariate Analysis - Part 2. Chapter 10 - Cluster Analysis, pp. 61-94.London: Arnold.

  • Kudo M and Sklansky J (2000) Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33(2000), 25-41.

    Article  Google Scholar 

  • Liu JJ and Kwok JTY (2000) An extended genetic rule induction algorithm. Proc. 2000 Congress on Evolutionary Computation (CEC-2000). IEEE.

    Google Scholar 

  • Liu H and Motoda H (1998) Feature Selection for Knowledge Discovery and Data Mining. Kluwer.

    Google Scholar 

  • Liu B, Hsu W and Chen S (1997) Using general impressions to analyze discovered classification rules. Proc. 3rd Int. Conf. on Knowledge Discovery and Data Mining (KDD-97), 31-36. AAAI Press.

    Google Scholar 

  • Llora X and Garrell J (2003) Prototype induction and attribute selection via evolutionary algorithms. Intelligent Data Analysis 7, 193-208.

    Google Scholar 

  • Miller MT, Jerebko AK, Malley JD, Summers RM (2003) Feature selection for computeraided polyp detection using genetic algorithms. Medical Imaging 2003: Physiology and Function: methods, systems and applications. Proc. SPIE Vol. 5031.

    Google Scholar 

  • Moser A and Murty MN (2000) On the scalability of genetic algorithms to very large-scale feature selection. Proc. Real-World Applications of Evolutionary Computing (EvoWorkshops 2000). LNCS 1803, 77-86. Springer.

    Google Scholar 

  • Muharram MA and Smith GD (2004) Evolutionary feature construction using information gain and gene index. Genetic Programming: Proc. 7th European Conf. (EuroGP-2003), LNCS 3003, 379-388. Springer.

    Google Scholar 

  • Muni DP, Pal NR and Das J (2004) A novel approach to design classifiers using genetic programming. IEEE Trans. Evolutionary Computation 8(2), 183-196, April 2004.

    Article  Google Scholar 

  • Neri F and Giordana A (1995) Search-intensive concept induction. Evolutionary Computation 3(4), 375-416.

    Article  Google Scholar 

  • Ni B and Liu J (2004) A novel method of searching the microarray data for the best gene subsets by using a genetic algorithms. Proc. Parallel Problem Solving From Nature (PPSN- 2004), LNCS 3242, 1153-1162, Springer.

    Google Scholar 

  • Otero FB, Silva MMS, Freitas AA and Nievola JC (2003) Genetic programming for attribute construction in data mining. Genetic Programming: Proc. EuroGP-2003, LNCS 2610, 384-393. Springer.

    Google Scholar 

  • Papagelis A and Kalles D (2001) Breeding decision trees using evolutionary techniques. Proc. 18th Int. Conf. Machine Learning (ICML-2001), 393-400. Morgan Kaufmann.

    Google Scholar 

  • Pappa GL and Freitas AA (2006) Automatically evolving rule induction algorithms. Machine Learning: ECML 2006 – Proc. of the 17th European Conf. on Machine Learning, LNAI 4212, 341-352. Springer.

    Google Scholar 

  • Pappa GL and Freitas AA (2007) Discovering new rule induction algorithms with grammarbased genetic programming. Maimon O and Rokach L (Eds.) Soft Computing for Knowledge Discovery and Data Mining. Springer.

    Google Scholar 

  • Pappa GL, Freitas AA and Kaestner CAA (2002) A multiobjective genetic algorithm for attribute selection. Proc. 4th Int. Conf. On Recent Advances in Soft Computing (RASC- 2002), 116-121. Nottingham Trent University, UK.

    Google Scholar 

  • Pappa GL, Freitas AA and Kaestner CAA (2004) Multi-Objective Algorithms for Attribute Selection in Data Mining. In: Coello Coello CA and Lamont GB (Ed.) Applications of Multi-objective Evolutionary Algorithms, 603-626. World Scientific.

    Google Scholar 

  • Pazzani MJ (2000) Knowledge discovery from data, IEEE Intelligent Systems, 10-13, Mar./Apr. 2000.

    Google Scholar 

  • Quinlan JR. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann.

    Google Scholar 

  • Romao W, Freitas AA and Pacheco RCS (2002) A Genetic Algorithm for Discovering Interesting Fuzzy Prediction Rules: applications to science and technology data. Proc. Genetic and Evolutionary Computation Conf. (GECCO-2002), pp. 1188-1195. Morgan Kaufmann.

    Google Scholar 

  • Romao W, Freitas AA, Gimenes IMS (2004) Discovering interesting knowledge from a science and technology database with a genetic algorithm. Applied Soft Computing 4(2), pp. 121-137.

    Article  Google Scholar 

  • Rozsypal A and Kubat M (2003) Selecting representative examples and attributes by a genetic algorithm. Intelligent Data Analysis 7, 290-304.

    Google Scholar 

  • Sarafis I (2005) Data mining clustering of high dimensional databases with evolutionary algorithms. PhD Thesis, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK.

    Google Scholar 

  • Sharpe PK and Glover RP (1999) Efficient GA based techniques for classification. Applied Intelligence 11, 277-284.

    Article  Google Scholar 

  • Smith RE (2000) Learning classifier systems. In: T. Back, D.B. Fogel and T. Michalewicz (Eds.) Evolutionary Computation 1: Basic Algorithms and Operators, 114-123. Institute of Physics Publishing.

    Google Scholar 

  • Smith MG and Bull L (2003) Feature construction and selection using genetic programming and a genetic algorithm. Genetic Programming: Proc. EuroGP-2003, LNCS 2610, 229-237. Springer.

    Google Scholar 

  • Smith MG and Bull L (2004) Using genetic programming for feature creation with a genetic

    Google Scholar 

  • algorithm feature selector. Proc. Parallel Problem Solving From Nature (PPSN-2004), LNCS 3242, 1163-1171, Springer.

    Google Scholar 

  • Song D, Heywood MI and Zincir-Heywood AN (2005) Training genetic programming on half a million patterns: an example from anomaly detection. IEEE Trans. Evolutionary Computation 9(3), 225-239, June 2005.

    Article  Google Scholar 

  • Srikanth R, George R, Warsi N, Prabhu D, Petry FE, Buckles B (1995) A variable-length genetic algorithm for clustering and classification. Pattern Recognition Letters 16(8), 789-800.

    Article  Google Scholar 

  • Tan PN, Steinbach M and Kumar V (2006) Introduction to Data Mining. Addison-Wesley.

    Google Scholar 

  • Terano T and Ishino Y (1998) Interactive genetic algorithm based feature selection and its application to marketing data analysis. In: Liu H and Motoda H (Eds.) Feature Extraction, Construction and Selection: a data mining perspective, 393-406. Kluwer.

    Google Scholar 

  • Terano T and Inada M (2002) Data mining from clinical data using interactive evolutionary computation. In: A. Ghosh and S. Tsutsui (Eds.) Advances in Evolutionary Computing: theory and applications, 847-861. Springer.

    Google Scholar 

  • Vafaie H and De Jong K (1998) Evolutionary Feature Space Transformation. In: H. Liu and H. Motoda (Eds.) Feature Extraction, Construction and Selection, 307-323. Kluwer.

    Google Scholar 

  • Witten IH and Frank E (2005) Data Mining: practical machine learning tools and techniques. 2nd Ed. Morgan Kaufmann.

    Google Scholar 

  • Wong ML and Leung KS (2000) Data Mining Using Grammar Based Genetic Programming and Applications. Kluwer.

    Google Scholar 

  • Yang J and Honavar V (1997) Feature subset selection using a genetic algorithm. Genetic Programming 1997: Proc. 2nd Annual Conf. (GP-97), 380-385. Morgan Kaufmann.

    Google Scholar 

  • Yang J and Honavar V (1998) Feature subset selection using a genetic algorithm. In: Liu, H. and Motoda, H (Eds.) Feature Extraction, Construction and Selection, 117-136. Kluwer.

    Google Scholar 

  • Zhang P, Verma B, Kumar K (2003) Neural vs. Statistical classifier in conjunction with genetic algorithm feature selection in digital mammography. Proc. Congress on Evolutionary Computation (CEC-2003). IEEE Press.

    Google Scholar 

  • Zhou C, Xiao W, Tirpak TM and Nelson PC (2003) Evolving accurate and compact classification rules with gene expression programming. IEEE Trans. on Evolutionary Computation 7(6), 519-531.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex A. Freitas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Freitas, A.A. (2009). A Review of Evolutionary Algorithms for Data Mining. In: Maimon, O., Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09823-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09823-4_19

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09822-7

  • Online ISBN: 978-0-387-09823-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics