Skip to main content

Mechanical Failure Processes in Nanomaterials

  • Chapter
  • First Online:
Nanomaterials
  • 2405 Accesses

Abstract

The definition of the failure of a material is of course determined by the intended application. For example, in the majority of traditional mechanical design problems, the material is intended to operate in the elastic range. Therefore, in that application, the material may be said to fail when it begins to deform plastically (that is, when the yield strength is reached).We have discussed the onset of plasticity (yield, or the elastic limit) in the previous chapter. Beyond yield, the material continues to carry load in a nonlinear manner, corresponding to the plastic deformation; the nonlinear response is something that designers often avoid because of the complexity associated with the constitutive behavior in that domain. In this chapter, our interest is primarily in the applications of nanomaterials beyond the elastic limit, assuming a modicum of plastic deformations. Situations where there is no nonlinear deformation after the elastic limit is reached, as in ceramics, will be discussed as well.

Stone cracks from a hard enough blow. Steel shatters. The oak fights the wind and breaks. The willow bends where it must and survives.

Robert Jordan, The Wheel of Time

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bai, Y. and B. Dodd (1992). Adiabatic Shear Localization. New York: Pergamon Press.

    Google Scholar 

  • Bridgman, P. (1952). Studies in Large Plastic Flow and Fracture, with Special Emphasis on the Effects of Hydrostatic Pressure. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Carsley, J., A. Fisher, W. Milligan, and E. Aifantis (1998). Mechanical behavior of a bulk nanostructured iron alloy.Metallurgical Materials Transactions A 29A, 2261–2271.

    Article  Google Scholar 

  • Carsley, J. E. (1996). Mechanical Behavior of Nanostructured Metals. Ph. D. thesis, Michigan Technological University.

    Google Scholar 

  • Chichili, D., K. Ramesh, and K. Hemker (1998). The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling. Acta Materialia 46, 1025–43.

    Article  Google Scholar 

  • Dalla Torre, F., H. V. Swygenhoven, and M. Victoria (2002). Nanocrystalline electrodeposited ni: microstructure and tensile properties. Acta Materialia 50, 3957–3970.

    Article  Google Scholar 

  • Dao, M., L. Lu, R. J. Asaro, J. De Hosson, and E. Ma (2007). Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Materialia 55, 4041–4065.

    Article  Google Scholar 

  • Davies, A. R. (2004). The toughness of free-standing cvd diamond. Journal of Materials Science 39 (5), 1571–1574.

    Article  Google Scholar 

  • Hutchinson, J. W. and K. W. Neale (1977). Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metallurgica 25 (8), 839–846.

    Article  Google Scholar 

  • Jia, D., K. Ramesh, and E. Ma (2000). Failure mode and dynamic behavior of nanophase iron under compression. Scripta Mater 42, 73–78.

    Article  Google Scholar 

  • Jia, D., K. T. Ramesh, and E. Ma (2003). Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Materialia 51 (12), 3495–3509.

    Article  Google Scholar 

  • Jonnalagadda, K. and I. Chasiotis (2008). Tensile behavior of thin films of nanocrystalline fcc metals. Submitted for publication .

    Google Scholar 

  • Kumar, K. S., S. Suresh, M. F. Chisholm, J. A. Horton, and P. Wang (2003). Deformation of electrodeposited nanocrystalline nickel. Acta Materialia 51 (2), 387–405.

    Article  Google Scholar 

  • Lin, I. H., J. P. Hirth, and E. W. Hart (1981). Plastic instability in uniaxial tension tests. Acta Metallurgica 29 (5), 819–827.

    Article  Google Scholar 

  • Ma, E. (2006). Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. Journal of Materials (JOM) April, 49–53.

    Google Scholar 

  • Malow, T., C. Koch, P. Miraglia, and K. Murty (1998). Compressive mechanical behavior of nanocrystalline fe investigated with an automated ball indentation technique. Materials Science & Engineering A A252, 36–43.

    Article  Google Scholar 

  • Meyers, M., G. Subhash, B. Kad, and L. Prasad (1994). Evolution of microstructure and shear-band formation in alpha -hcp-titanium. Mechanics of Materials 17, 175–93.

    Article  Google Scholar 

  • Nemat-Nasser, S., T. Okinaka, and L. Q. Ni (1998). A physically-based constitutive model for bcc crystals with application to polycrystalline tantalum. Journal of the Mechanics and Physics of Solids 46 (6), 1009–1038.

    Article  MATH  Google Scholar 

  • Sanders, P., C. Youngdahl, and J. R. Weertman (1997). The strength of nanocrystal \ -line metals with and without flaws. Materials Science and Engineering A 234–236, 77–82.

    Article  Google Scholar 

  • Vinogradov, A. and S. Hashimoto (2001). Multiscale phenomena in fatigue of ultra fine grain materials-an overview. Materials Transactions JIM 42, 74–84.

    Article  Google Scholar 

  • Wang, Y. M., M. W. Chen, F. H. Zhou, and E. Ma (2002). High tensile ductility in a nanostructured metal. Nature 419 (6910), 912–915.

    Article  Google Scholar 

  • Wei, Q., D. Jia, K. Ramesh, and E. Ma (2002). Evolution and microstructure of shear bands in nanostructured fe. Applied Physics Letters 81 (7), 1240–1242.

    Article  Google Scholar 

  • Wei, Q., L. Kecskes, T. Jiao, K. T. Hartwig, K. T. Ramesh, and E. Ma (2004b). Adiabatic shear banding in ultrafine-grained fe processed by severe plastic deformation. Acta Materialia 52 (7), 1859–1869.

    Google Scholar 

  • Woodford, D. A. (1969). Strain-rate sensitivity as a measure of ductility. ASM Transactions Quarterly 62 (1), 291.

    Google Scholar 

  • Wright, T. (2002). The Physics and Mathematics of Adiabatic Shear Bands. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Wright, T. W. and K. T. Ramesh (2008). Dynamic void nucleation and growth in solids: A self-consistent statistical theory. Journal of the Mechanics and Physics of Solids 56 (2), 336–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, X., K. Ramesh, and T. Wright (2003). The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. Journal of the Mechanics and Physics of Solids 51 (1), 1–26.

    Article  MATH  Google Scholar 

  • Youssef, K. M., R. O. Scattergood, K. L. Murty, J. A. Horton, and C. C. Koch (2005). Ultrahigh strength and high ductility of bulk nanocrystalline copper. Applied Physics Letters 87 (9). 091904.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.T. Ramesh .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ramesh, K. (2009). Mechanical Failure Processes in Nanomaterials. In: Nanomaterials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09783-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09783-1_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09782-4

  • Online ISBN: 978-0-387-09783-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics