Skip to main content

Congestion Control in the Wired Cum Wireless Internet

  • Chapter
  • First Online:
Heterogeneous Wireless Access Networks
  • 624 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Postel, “Transmission control protocol,” RFC 793, September 1981.

    Google Scholar 

  2. K. C. Claffy, “Internet traffic characterization,” Ph.D. dissertation, University of Califor-nia, San Diego, 1994.

    Google Scholar 

  3. “Cooperative association for Internet data analysis,” 2007,http://www.caida. org

  4. K. Pentikousis, “TCP in wired-cum-wireless environments,” IEEE Communications Surveys, vol. 3, no. 4, pp. 2–14, Fourth Quarter 2000.

    Article  Google Scholar 

  5. X. Chen, H. Zhai, J. Wang, and Y. Fang, “A survey on improving TCP performance over wireless networks,” in Resource Management in Wireless Networking, Network Theory and Applications, M. Cardei, I. Cardei, and D.-Z. Du, Eds. Springer US, 2005, vol. 16, pp. 657-695.

    Google Scholar 

  6. Y. Tian, K. Xu, and N. Ansari, “TCP in wireless environments: Problems and solutions,” IEEE Communications Magazine, vol. 43, no. 3, pp. S27-S32, March 2005.

    Google Scholar 

  7. B. Sardar and D. Saha, “A survey of TCP enhancements for last-hop wireless networks,” IEEE Communications Surveys & Tutorials, vol. 8, no. 3, pp. 20-34, Third Quarter 2006.

    Article  Google Scholar 

  8. K.-C. Leung and V. Li, “Transmission control protocol (TCP) in wireless networks: issues, approaches, and challenges,” IEEE Communications Surveys & Tutorials, vol. 8, no. 4, pp. 64-79, Fourth Quarter 2006.

    Article  MathSciNet  Google Scholar 

  9. Institute of Electrical and Electronics Engineers (IEEE), “Part 11: Wireless lan medium access control (MAC) and physical layer (PHY) specifications,” IEEE Standard 802.11, 1999.

    Google Scholar 

  10. Institute of Electrical and Electronics Engineers (IEEE), “Part 16: Air interface for fixed broadband wireless access systems,” IEEE Standard 802.16, 2004.

    Google Scholar 

  11. International Telecommunication Union (ITU), “International mobile telecommunications - 2000 (IMT-2000),” ITU standard IMT-2000. [Online]. Available: http://www. itu.int/home/imt.html

  12. J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and evaluation of an unplanned 802.11b mesh network,” in MobiCom ’05: Proceedings of the 11th annual international conference on Mobile computing and networking. New York, NY, USA: ACM, 2005, pp. 31-42.

    Google Scholar 

  13. Bluetooth Special Interest Group (SIG), “Bluetooth core specifications, core specification v2.0 + EDR,” Bluetooth standard, 2004.

    Google Scholar 

  14. “Satellite Internet service providers.” [Online]. Available:http://www.getisp. info/satellite-internet.html

  15. V. Jacobson, “Modified TCP congestion avoidance algorithm,” 1990. [Online]. Available:ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt

  16. S. H. Low, “A duality model of TCP and queue management algorithms,”IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 525-536, 2003.

    Article  MathSciNet  Google Scholar 

  17. S. Floyd and T. Henderson, “The NewReno modification to TCP’s fast recovery algorithm,” RFC 2582, April 1999.

    Google Scholar 

  18. A. Medina, M. Allman, and S. Floyd, “Measuring the evolution of transport protocols in the Internet,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 2, pp. 37-52, 2005.

    Article  Google Scholar 

  19. C. E. Perkins, “Mobile IP,” IEEE Communications Magazine, vol. 35, no. 5, pp. 84-99, 1997.

    Article  Google Scholar 

  20. N. Ghani and S. Dixit, “TCP/IP enhancements for satellite networks,” IEEE Communications Magazine, vol. 37, no. 7, pp. 64-72, 1999.

    Article  Google Scholar 

  21. T. Taleb, N. Kato, and Y. Nemoto, “REFWA: an efficient and fair congestion control scheme for LEO satellite networks,” IEEE/ACM Transaction on Networking, vol. 14, no. 5, pp. 1031-1044, 2006.

    Article  Google Scholar 

  22. I. F. Akyildiz, G. Morabito, and S. Palazzo, “TCP-Peach: A new congestion control scheme for satellite IP networks,” IEEE/ACM Transactions on Networking, vol. 9, no. 3, pp. 307-321, Jun 2001.

    Google Scholar 

  23. A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile hosts,” inProc. IEEE ICDCS, 1995I-TCP.

    Google Scholar 

  24. H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving TCP/IP performance over wireless networks,” in Proc. ACM MobiCom, 1995.

    Google Scholar 

  25. H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A comparison of mechanisms for improving TCP performance over wireless links,” IEEE/ACM Transaction on Networking, vol. 5, no. 6, pp. 756-769, 1997.

    Article  Google Scholar 

  26. P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Bharghavan, “WTCP: a reliable transport protocol for wireless wide-area networks,” Wireless Network, vol. 8, no. 2/3, pp. 301-316, 2002.

    Article  MATH  Google Scholar 

  27. M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective acknowledgment options,” RFC 2018, October 1996.

    Google Scholar 

  28. S. Keshav, “A control-theoretic approach to flow control,” ACM SIGCOMM Computer Communication Review, vol. 21, no. 4, pp. 3-15, 1991.

    Article  Google Scholar 

  29. C. Casetti, M. Gerla, S. Mascolo, M. Sansadidi, and R. Wang, “TCP Westwood: End-to-end congestion control for wired/wireless networks,” Wireless Networks, vol. 8, pp. 467-479, 2002.

    Article  MATH  Google Scholar 

  30. S. Mascolo, L. A. Grieco, R. Ferorelli, P. Camarda, and G. Piscitelli, “Performance evaluation of Westwood+ TCP congestion control,” Performance Evaluation, vol. 55, no. 1-2, pp. 93-111, 2004.

    Article  Google Scholar 

  31. M. Gerla, B. K. F. Ng, M. Y. Sanadidi, M. Valla, and R. Wang, “TCP Westwood with adaptive bandwidth estimation to improve efficiency/friendliness tradeoffs,” Computer Communications, vol. 27, no. 1, pp. 41-58, 2004.

    Article  Google Scholar 

  32. A. Capone, L. Fratta, and F. Martignon, “Bandwidth estimation schemes for TCP over wireless networks,” IEEE Transactions on Mobile Computing, vol. 3, no. 2, pp. 129-143, 2004.

    Article  Google Scholar 

  33. D. Barman and I. Matta, “Effectiveness of loss labeling in improving TCP performance in wired/wireless networks,” in Proc. IEEE ICNP. Washington, DC, USA: IEEE Computer Society, 2002, pp. 2-11.

    Google Scholar 

  34. C. P. Fu and S. C. Liew, “TCP Veno: TCP enhancement for transmission over wireless access networks,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 2, pp. 216-228, Feb 2003.

    Google Scholar 

  35. L. Brakmo, S. O’Malley, and L. Peterson, “TCP Vegas: New techniques for congestion detection and avoidance,” in Proc. ACM SIGCOMM, 1994.

    Google Scholar 

  36. E. H.-K. Wu and M.-Z. Chen, “JTCP: jitter-based TCP for heterogeneous wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 4, pp. 757-766, 2004.

    Article  Google Scholar 

  37. S. Cen, P. C. Cosman, and G. M. Voelker, “End-to-end differentiation of congestion and wireless losses,” IEEE/ACM Transaction on Networking, vol. 11, no. 5, pp. 703-717, 2003.

    Article  Google Scholar 

  38. S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control for unicast applications,” in Proc. ACM SIGCOMM. New York, NY, USA: ACM, 2000, pp. 43-56.

    Google Scholar 

  39. S. Biaz and N. H. Vaidya, ““De-randomizing” congestion losses to improve TCP performance over wired-wireless networks,” IEEE/ACM Transaction on Networking, vol. 13, no. 3, pp. 596-608, 2005.

    Article  Google Scholar 

  40. C. Parsa and J. Garcia-Luna-Aceves, “Improving TCP congestion control over internets with heterogeneous transmission media,” in Proc. IEEE ICNP, 1999.

    Google Scholar 

  41. R. Jain, “A delay-based approach for congestion avoidance in interconnected heterogeneous computer networks,” ACM SIGCOMM Computer Communication Review, vol. 19, no. 5, pp. 56-71, 1989.

    Article  Google Scholar 

  42. Z. Wang and J. Crowcroft, “A new congestion control scheme: Slow start and search (Tri-S),” ACM SIGCOMM Computer Communication Review, vol. 21, no. 1, pp. 32-43, 1991.

    Article  Google Scholar 

  43. Z. Wang and J. Crowcroft, “Eliminating periodic packet losses in the 4.3-Tahoe BSD TCP congestion control algorithm,” ACM SIGCOMM Computer Communication Review, vol. 22, no. 2, pp. 9-16, 1992.

    Article  Google Scholar 

  44. S. Bhandarkar, A. L. N. Reddy, Y. Zhang, and D. Loguinov, “Emulating AQM from end hosts,” in Proc. ACM SIGCOMM. New York, NY, USA: ACM, 2007, pp. 349-360.

    Google Scholar 

  45. J. Martin, A. Nilsson, and I. Rhee, “Delay-based congestion avoidance for TCP,” IEEE/ACM Transaction on Networking, vol. 11, no. 3, pp. 356-369, 2003.

    Article  Google Scholar 

  46. S. Biaz and N. H. Vaidya, “Distinguishing congestion losses from wireless transmission losses: A negative result,” in Proc. IC3N. Washington, DC, USA: IEEE Computer Society, 1998, p. 722.

    Google Scholar 

  47. S. Floyd, “TCP and explicit congestion notification,” ACM SIGCOMM Computer Communication Review, vol. 24, no. 5, pp. 8-23, 1994.

    Article  MathSciNet  Google Scholar 

  48. K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit congestion notifica-tion (ECN) to IP,” RFC 3168, September 2001.

    Google Scholar 

  49. K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP communications,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 4, pp. 747-756, May 2004.

    Google Scholar 

  50. K. Brown and S. Singh, “M-TCP: TCP for mobile cellular networks,”ACM SIGCOMM Computer Communication Review, vol. 27, no. 5, pp. 19-43, 1997.

    Article  Google Scholar 

  51. T. Goff, J. Moronski, D. S. Phatak, and V. Gupta, “Freeze-TCP: A true end-to-end enhancement mechanism for mobile environments,” in Proc. IEEE INFOCOM, 2000.

    Google Scholar 

  52. K.-H. Kim, Y. Zhu, R. Sivakumar, and H.-Y. Hsieh, “A receiver-centric transport protocol for mobile hosts with heterogeneous wireless interfaces,” Wireless Network, vol. 11, no. 4, pp. 363-382, 2005.

    Article  Google Scholar 

  53. H.-Y. Hsieh, K.-H. Kim, and R. Sivakumar, “An end-to-end approach for transparent mobility across heterogeneous wireless networks,” Mobile Networks and Applications, vol. 9, no. 4, pp. 363-378, 2004.

    Article  Google Scholar 

  54. S. Floyd, “HighSpeed TCP for large congestion windows,” RFC 3649, Dec. 2003.

    Google Scholar 

  55. T. Kelly, “Scalable TCP: Improving performance in high-speed wide area networks,” ACM SIGCOMM Computer Communication Review, vol. 33, pp. 83-91, Apr. 2003.

    Google Scholar 

  56. C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation, architecture, algorithms, performance,” in Proc. IEEE INFOCOM, Hong Kong, Mar. 2004.

    Google Scholar 

  57. I. Akyildiz, X. Zhang, and J. Fang, “TCP-Peach+: Enhancement of TCP-Peach for satellite IP networks,” IEEE Communications Letters, vol. 6, no. 7, pp. 303-305, 2002.

    Article  Google Scholar 

  58. D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high bandwidth-delay product networks,” in Proc. ACM SIGCOMM. New York, NY, USA: ACM, 2002, pp. 89-102.

    Google Scholar 

  59. A. Kapoor, A. Falk, T. Faber, and Y. Pryadkin, “Achieving faster access to satellite link bandwidth,” in Proc. IEEE INFOCOM, 2005.

    Google Scholar 

  60. J.-C. Moon and B. G. Lee, “Rate-adaptive snoop: A TCP enhancement scheme over rate-controlled lossy links,” IEEE/ACM Transaction on Networking, vol. 14, no. 3, pp. 603-615, 2006.

    Article  Google Scholar 

  61. K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A feedback based scheme for improving TCP performance in ad-hoc wireless networks,” in Proc. IEEE ICDCS. Washington, DC, USA: IEEE Computer Society, 1998, p. 472.

    Google Scholar 

  62. J. Liu and S. Singh, “ATCP: TCP for mobile ad hoc networks,” IEEE Journal on Selected Areas in Communications, vol. 19, no. 7, pp. 1300-1315, July 2001.

    Google Scholar 

  63. S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An extension to the selective acknowledgment (SACK) option for TCP,” RFC 2883, July 2000.

    Google Scholar 

  64. E. Blanton and M. Allman, “On making TCP more robust to packet reordering,” ACM SIGCOMM Computer Communication Review, vol. 32, no. 1, pp. 20-30, 2002.

    Article  Google Scholar 

  65. M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: A reordering-robust TCP with DSACK,” in Proc. IEEE ICNP. Washington, DC, USA: IEEE Computer Society, 2003, p. 95.

    Google Scholar 

  66. S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and K. Obraczka, “A new TCP for persistent packet reordering,” IEEE/ACM Transaction on Networking, vol. 14, no. 2, pp. 369-382, 2006.

    Article  Google Scholar 

  67. F. Wang and Y. Zhang, “Improving TCP performance over mobile ad-hoc networks with out-of-order detection and response,” in Proc. ACM MobiHoc. New York, NY, USA: ACM, 2002, pp. 217-225.

    Google Scholar 

  68. K. Xu, M. Gerla, L. Qi, and Y. Shu, “TCP unfairness in ad hoc wireless networks and a neighborhood RED solution,” Wireless Network, vol. 11, no. 4, pp. 383-399, 2005.

    Article  Google Scholar 

  69. C. Lim, H. Luo, and C.-H. Choi, “RAIN: A reliable wireless network architecture,” in Proc. IEEE ICNP, 2006.

    Google Scholar 

  70. V. Anantharaman, K. Sundaresan, H.-Y. Hsieh, and R. Sivakumar, “ATP: A reliable transport protocol for ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 4, no. 6, pp. 588-603, 2005.

    Article  Google Scholar 

  71. S. Floyd and E. Kohler, “Tools for the evaluation of simulation and testbed scenarios,” July 2007, working in progress. [Online]. Available: http://tools.ietf.org/ html/draft-irtf-tmrg-tools-04

  72. S. Floyd, “Metrics for the evaluation of congestion control mechanisms,” Oct. 2007, working in progress. [Online]. Available:http://tools.ietf.org/html/ draft-irtf-tmrg-metrics-11

  73. N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating internet bottlenecks: algorithms, measurements, and implications,” in Proc. ACM SIGCOMM, 2004, pp. 41-54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, S., Hei, X., Zhu, J., Bensaou, B. (2008). Congestion Control in the Wired Cum Wireless Internet. In: Hossain, E. (eds) Heterogeneous Wireless Access Networks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09777-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09777-0_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09776-3

  • Online ISBN: 978-0-387-09777-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics