Skip to main content

Novel Perspectives on Protein Structure Prediction

  • Chapter
  • First Online:
Problem Solving Handbook in Computational Biology and Bioinformatics

Abstract

Our understanding of the protein structure prediction problem is evolving. Recent experimental insights into the protein folding mechanism suggest that many polypeptides may adopt multiple conformations. Consequently, modeling and prediction of an ensemble of configurations is more relevant than the classical approach that aims to compute a single structure for a given sequence. In this chapter, we review recent algorithmic advances which enable the application of statistical mechanics techniques to predicting these structural ensembles. These techniques overcome the limitations of costly folding simulations and allow a rigorous model of the conformational landscape. To illustrate the strength and versatility of this approach, we present applications of these algorithms to various typical protein structure problems ranging from predicting residue contacts to experimental X-ray crystallography measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, N., Mamitsuka, H.: Predicting protein secondary structure using stochastic tree grammars. Machine Learning 29(2-3), 275–301 (1997)

    Article  MATH  Google Scholar 

  2. Ahn, V.E., Lo, E.I., Engel, C.K., Chen, L., Hwang, P.M., Kay, L.E., Bishop, R.E., Prive, G.G.: A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin. EMBO J 23(15), 2931–2941 (2004 Aug 4)

    Article  Google Scholar 

  3. Amato, N., Dill, K., Song, G.: Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures. Journal of Computational Biology 10(3-4), 239–255 (2003)

    Article  Google Scholar 

  4. Bartlett, A.I., Radford, S.E.: An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat Struct Mol Biol 16(6), 582–588 (2009)

    Article  Google Scholar 

  5. Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Giller, K., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., Zeth, K.: Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci U S A 105(40), 15,370–15,375 (2008 Oct 7)

    Article  Google Scholar 

  6. Berg, O.G., von Hippel, P.H.: Selection of DNA binding sites by regulatory proteins. statistical-mechanical theory and application to operators and promoters. J Mol Biol 193(4), 723–750 (1987 Feb 20)

    Article  Google Scholar 

  7. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) model is NPcomplete. J Comput Biol 5(1), 27–40 (1998)

    Article  Google Scholar 

  8. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.: The Protein Data Bank. Nucleic Acids Research 28, 235–242 (2000)

    Article  Google Scholar 

  9. Bourne, P., Weissig, H.: Structural Bioinformatics. Wiley-Liss (2003)

    Google Scholar 

  10. Bradley, P., Chivian, D., Meiler, J., Misura, K.M.S., Rohl, C.A., Schief, W.R., Wedemeyer, W.J., Schueler-Furman, O., Murphy, P., Schonbrun, J., Strauss, C.E.M., Baker, D.: Rosetta predictions in CASP5: Successes, failures, and prospects for complete automation. Proteins 53 Suppl 6, 457–468 (2003)

    Article  Google Scholar 

  11. Bradley, P., Cowen, L., Menke, M., King, J., Berger, B.: Betawrap: Successful prediction of parallel beta-helices from primary sequence reveals an association with many microbial pathogens. Proceedings of the National Academy of Sciences 98(26), 14,819–14,824 (2001)

    Article  Google Scholar 

  12. Cahill, M., Cahill, S., Cahill, K.: Proteins wriggle. Biophys J 82(5), 2665–2670 (2002 May)

    Article  Google Scholar 

  13. Chandler, D.: Introduction to Modern Statistical Mechanics. Oxford University Press (1987)

    Google Scholar 

  14. Cheng, J., Baldi, P.: Three-stage prediction of protein beta-sheets by neural networks, alignments and graph algorithms. Bioinformatics 21 Suppl 1, i75–84 (2005 Jun)

    Article  Google Scholar 

  15. Cheng, J., Baldi, P.: Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinformatics 8, 113 (2007)

    Article  Google Scholar 

  16. Chiang, D., Joshi, A.K., Dill, K.: A grammatical theory for the conformational changes of simple helix bundles. Journal of Computational Biology 13(1), 27–42 (2006)

    Article  MathSciNet  Google Scholar 

  17. Chotia, C.: The nature of the accessible and buried surfaces in proteins. J Mol. Biol. 105(1), 1–14 (1975)

    Article  Google Scholar 

  18. Clote, P., Backofen, R.: Computational Molecular Biology: An Introduction. John Wiley & Sons (2000). 279 pages

    Google Scholar 

  19. Clote, P., Waldispühl, J., Behzadi, B., Steyaert, J.M.: Energy landscape of k-point mutants of an RNA molecule. Bioinformatics 21(22), 4140–4147 (2005)

    Article  Google Scholar 

  20. Coutsias, E.A., Seok, C., Jacobson, M.P., Dill, K.A.: A kinematic view of loop closure. J Comput Chem 25(4), 510–528 (2004)

    Article  Google Scholar 

  21. Cowen, L., Bradley, P., Menke, M., King, J., Berger, B.: Predicting the beta-helix fold from protein sequence data. J of Computational Biology 9, 261–276 (2002)

    Article  Google Scholar 

  22. Dill, K., Bromberg, S.: Molecular Driving Forces. Garland Science, Taylor & Francis (2003). New York

    Google Scholar 

  23. Dill, K., Phillips, A., Rosen, J.: Protein structure and energy landscape dependence on sequence using a continuous energy function. J Comput Biol. 4(3), 227–39 (1997)

    Article  Google Scholar 

  24. Dill, K.A., Ozkan, S.B., Shell, M.S., Weikl, T.R.: The protein folding problem. Annu Rev Biophys 37, 289–316 (2008)

    Article  Google Scholar 

  25. Ding, Y., Lawrence, C.: A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31(24), 7280–7301 (2003)

    Article  Google Scholar 

  26. Dobson, C.M.: Protein folding and misfolding. Nature 426(6968), 884–890 (2003)

    Article  Google Scholar 

  27. Dyson, H.J., Wright, P.E.: Intrinsically unstructured proteins and their functions. Nat RevMol Cell Biol 6(3), 197–208 (2005 Mar)

    Article  Google Scholar 

  28. Fain, B., Levitt, M.: A novel method for sampling alpha-helical protein backbones. J Mol Biol. 305(2), 191–201 (2001)

    Article  Google Scholar 

  29. Fain, B., Levitt, M.: Funnel sculpting for in silico assembly of secondary structure elements of proteins. Proc. Natl. Acad. Sci. USA 100(19), 10,700–5 (2003)

    Article  Google Scholar 

  30. Foat, B.C., Morozov, A.V., Bussemaker, H.J.: Statistical mechanical modeling of genomewide transcription factor occupancy data by MatrixREDUCE. Bioinformatics 22(14), e141–9 (2006 Jul 15)

    Article  Google Scholar 

  31. Frishman, D., P., A.: Knowledge-based protein secondary structure assignment. Proteins 23, 566–579 (1995)

    Article  Google Scholar 

  32. Go, N., Scheraga, H.A.: Ring closure and local conformational deformations of chain molecules. Macromolecules 3(2), 178–187 (1970)

    Article  Google Scholar 

  33. Grana, O., Baker, D., MacCallum, R., Meiler, J., Punta, M., Rost B. and Tress, M., Valencia, A.: CASP6 assessment of contact prediction. Proteins 61(7), 214–224 (2005)

    Article  Google Scholar 

  34. Grosberg, A., Khokhlov, A.: Statistical Physics of Macromolecules. AIP Press (1994)

    Google Scholar 

  35. Guntert, P., Mumenthaler, C., Wuthrich, K.: Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273(1), 283–298 (1997 Oct 17)

    Article  Google Scholar 

  36. Hamelryck, T., Kent, J.T., Krogh, A.: Sampling realistic protein conformations using local structural bias. PLoS Comput Biol 2(9), e131 (2006 Sep 22)

    Article  Google Scholar 

  37. Hockenmaier, J., Joshi, A., Dill., K.: Routes are trees: The parsing perspective on protein folding. PROTEINS: Structure, Function, and Bioinformatics 66, 1–15 (2007)

    Article  Google Scholar 

  38. Hosur, R., Singh, R., Berger, B.: Personal communication

    Google Scholar 

  39. Huang, E.S., Subbiah, S., Tsai, J., Levitt, M.: Using a hydrophobic contact potential to evaluate native and near-native folds generated by molecular dynamics simulations. J Mol Biol 257(3), 716–725 (1996 Apr 5)

    Article  Google Scholar 

  40. Hubner, I.A., Deeds, E.J., Shakhnovich, E.I.: Understanding ensemble protein folding at atomic detail. Proc Natl Acad Sci U S A 103(47), 17,747–17,752 (2006 Nov 21)

    Article  Google Scholar 

  41. Huysmans, G.H.M., Radford, S.E., Brockwell, D.J., Baldwin, S.A.: The N-terminal helix is a post-assembly clamp in the bacterial outer membrane protein PagP. J Mol Biol 373(3), 529–540 (2007 Oct 26)

    Article  Google Scholar 

  42. Istrail, I.: Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intractability of the partition functions of the Ising model across non-planar lattices. In: A. Press (ed.) Proceedings of the 32nd ACM Symposium on the Theory of Computing (STOC00), pp. 87–96 (2000)

    Google Scholar 

  43. Izarzugaza, J.M.G., Grana, O., Tress, M.L., Valencia, A., Clarke, N.D.: Assessment of intramolecular contact predictions for CASP7. Proteins 69 Suppl 8, 152–158 (2007)

    Article  Google Scholar 

  44. King, J., Haase-Pettingell, C., Gossard, D.: Protein folding and misfolding. American Scientist 90(5), 445–453 (2002)

    Google Scholar 

  45. Knight, J.L., Zhou, Z., Gallicchio, E., Himmel, D.M., Friesner, R.A., Arnold, E., Levy, R.M.: Exploring structural variability in X-ray crystallographic models using protein local optimization by torsion-angle sampling. Acta Crystallogr D Biol Crystallogr 64(Pt 4), 383–396 (2008 Apr)

    Article  Google Scholar 

  46. Koebnik, R.: Membrane assembly of the Escherichia coli outer membrane protein OmpA: Exploring sequence constraints on transmembrane β -strands. J. Mol. Biol. 285, 1801–1810 (1999)

    Article  Google Scholar 

  47. Kolodny, R., Koehl, P., Guibas, L., Levitt, M.: Small libraries of protein fragments model native protein structures accurately. J Mol Biol 323(2), 297–307 (2002 Oct 18)

    Article  Google Scholar 

  48. Krishnamoorthy, B., Tropsha, A.: Development of a four-body statistical pseudo-potential to discriminate native from non-native protein conformations. Bioinformatics 19(12), 1540–1548 (2003 Aug 12)

    Article  Google Scholar 

  49. Manocha, D., Zhu, Y., Wright, W.: Conformational analysis of molecular chains using nanokinematics. Comput Appl Biosci 11(1), 71–86 (1995)

    Google Scholar 

  50. McCaskill, J.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)

    Article  Google Scholar 

  51. McDonnell, A.V., Menke, M., Palmer, N., King, J., Cowen, L., Berger, B.: Fold recognition and accurate sequence-structure alignment of sequences directing beta-sheet proteins. Proteins 63(4), 976–985 (2006 Jun 1)

    Article  Google Scholar 

  52. Miller, D., Dill, K.: Ligand binding to proteins: the binding landscape model. Protein Sci. 6(10), 2166–79 (1997)

    Article  Google Scholar 

  53. Mirny, L., Shakhnovich, E.: Protein folding theory: from lattice to all-atom models. Annu Rev Biophys Biomol Struct. 30, 361–96 (2001)

    Article  Google Scholar 

  54. Morozov, A.V., Havranek, J.J., Baker, D., Siggia, E.D.: Protein-DNA binding specificity predictions with structural models. Nucleic Acids Res 33(18), 5781–5798 (2005)

    Article  Google Scholar 

  55. Park, B., Levitt, M.: Energy functions that discriminate X-ray and near native folds from wellconstructed decoys. J Mol Biol 258(2), 367–392 (1996 May 3)

    Article  Google Scholar 

  56. Pereira, P.J., Lozanov, V., Patthy, A., Huber, R., Bode, W., Pongor, S., Strobl, S.: Specific inhibition of insect alpha-amylases: yellow meal worm alpha-amylase in complex with the amaranth alpha-amylase inhibitor at 2.0 A resolution. Structure 7(9), 1079–1088 (1999 Sep 15)

    Article  Google Scholar 

  57. Punta, B., Rost, B.: Profcon: novel prediction of long-range contacts. Bioinformatics 21(13), 2960–2968 (2005)

    Article  Google Scholar 

  58. Ramachandran, G., Sasisekharan, V.: Conformation of polypeptides and proteins. Adv. Protein. Chem. 23, 283–437 (1968)

    Article  Google Scholar 

  59. Randall, A., Cheng, J., Sweredoski, M., Baldi, P.: TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins. Bioinformatics 24(4), 513–520 (2008 Feb 15)

    Article  Google Scholar 

  60. Rhodes, G.: CrystallographyMade Crystal Clear, 2nd edn. Academic Press: San Diego (2000)

    Google Scholar 

  61. Rumbley, J., Hoang, L., Mayne, L., Englander, S.W.: An amino acid code for protein folding. Proc Natl Acad Sci U S A 98(1), 105–112 (2001)

    Article  Google Scholar 

  62. Schlessinger, A., Rost, B.: Protein flexibility and rigidity predicted from sequence. Proteins 61(1), 115–126 (2005)

    Article  Google Scholar 

  63. Schultz, C.: Illuminating folding intermediates. Nature Structural Biology 7, 7–10 (2000)

    Article  Google Scholar 

  64. Schulz, G.: β -barrel membrane proteins. Current Opinion in Structural Biology 10, 443–447 (2000)

    Article  MathSciNet  Google Scholar 

  65. Shorter, J., Lindquist, S.: Prions as adaptive conduits of memory and inheritance. Nat Rev Genet 6(6), 435–450 (2005 Jun)

    Article  Google Scholar 

  66. Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. J Mol Biol 268(1), 209–225 (1997 Apr 25)

    Article  Google Scholar 

  67. Singh, R., Berger, B.: ChainTweak: Sampling from the neighbourhood of a protein conformation. Proceedings of the 10th Pacific Symposium on Biocomputation pp. 52–63 (2005)

    Google Scholar 

  68. Sippl, M.J.: Calculation of conformational ensembles from potentials of mean force. Journal of Molecular Biology 213, 859–883 (1990)

    Article  Google Scholar 

  69. Thomas, S., Song, G., Amato, N.M.: Protein folding by motion planning. Phys Biol 2(4), S148–55 (2005 Nov)

    Article  Google Scholar 

  70. Ulmschneider, J.P., Jorgensen, W.L.: Polypeptide folding using monte carlo sampling, concerted rotation, and continuum solvation. J Am Chem Soc 126(6), 1849–1857 (2004 Feb 18)

    Article  Google Scholar 

  71. Vandeputte-Rutten, L., Bos, M.P., Tommassen, J., Gros, P.: Crystal structure of neisserial surface protein A (NspA), a conserved outer membrane protein with vaccine potential. J Biol Chem 278(27), 24,825–24,830 (2003 Jul 4)

    Article  Google Scholar 

  72. Voelz, V., Dill, K.: Exploring zipping and assembly as a protein folding principle. Proteins: Structure Function and Bioinformatics 66, 877–888 (2007)

    Article  Google Scholar 

  73. Vogt, J., Schulz, G.E.: The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 7(10), 1301–1309 (1999 Oct 15)

    Article  Google Scholar 

  74. Wagner, G.P., Otto, W., Lynch, V., Stadler, P.F.: A stochastic model for the evolution of transcription factor binding site abundance. J Theor Biol 247(3), 544–553 (2007 Aug 7)

    Article  MathSciNet  Google Scholar 

  75. Waldispühl, J., Berger, B., Clote, P., Steyaert, J.M.: Predicting transmembrane β -barrels and inter-strand residue interactions from sequence. Proteins: Structure, Function and Bioinformatics 65, 61–74 (2006). Doi:10.1002/prot.2146

    Article  Google Scholar 

  76. Waldispühl, J., Berger, B., Clote, P., Steyaert, J.M.: transfold: A web server for perdicting the structure of transmembrane proteins. Nucleic Acids Research (Web Server Issue) 34, W189–W193 (2006). Doi:10.1093/nar/glk205

    Article  Google Scholar 

  77. Waldispühl, J., O’Donnell, C.W., Devadas, S., Clote, P., Berger, B.: Modeling ensembles of transmembrane beta-barrel proteins. Proteins 71(3), 1097–1112 (2008 May 15)

    Article  Google Scholar 

  78. Waldispühl, J., O’Donnell, C.W.,Will, S., Devadas, S., Backofen, R., Berger, B.: Simultaneous alignment and folding of protein sequences. In: S. Batzoglou (ed.) Research in Computational Molecular Biology, Lecture Notes in Computer Science, vol. Volume 5541/2009, pp. 339–355. Springer Berlin / Heidelberg (2009)

    Chapter  Google Scholar 

  79. Waldispühl, J., Steyaert, J.M.: Modeling and predicting all-alpha transmembrane proteins including helix-helix pairing. Theor. Comput. Sci. 335(1), 67–92 (2005)

    Article  MATH  Google Scholar 

  80. William J. Wedemeyer, H.A.S.: Exact analytical loop closure in proteins using polynomial equations. J Comput Chem 20(8), 819–844 (1999)

    Article  Google Scholar 

  81. Wimley, W.C., White, S.H.: Reversible unfolding of β -sheets in membranes: A calorimetric study. Journal of Molecular Biology 342, 703–711 (2004)

    Article  Google Scholar 

  82. Xia, Y., Huang, E.S., Levitt, M., Samudrala, R.: Ab initio construction of protein tertiary structures using a hierarchical approach. J Mol Biol 300(1), 171–185 (2000 Jun 30)

    Article  Google Scholar 

  83. Y., Z., J., S.: SPICKER: A clustering approach to identify near-native protein folds. Journal of Computational Chemistry 25, 865–871 (2004)

    Article  Google Scholar 

  84. Zhao, F., Li, S., Sterner, B.W., Xu, J.: Discriminative learning for protein conformation sampling. Proteins 73(1), 228–240 (2008 Oct)

    Article  Google Scholar 

  85. Zhao, F., Peng, J., DeBartolo, J., Freed, K.F., Sosnick, T.R., Xu, J.: A probabilistic graphical model for ab initio folding. In: S. Batzoglou (ed.) Research in Computational Molecular Biology, Lecture Notes in Computer Science, vol. Volume 5541/2009, pp. 59–73. Springer Berlin / Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer US

About this chapter

Cite this chapter

Berger, B., Waldispühl, J. (2010). Novel Perspectives on Protein Structure Prediction. In: Heath, L., Ramakrishnan, N. (eds) Problem Solving Handbook in Computational Biology and Bioinformatics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09760-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09760-2_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09759-6

  • Online ISBN: 978-0-387-09760-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics