Skip to main content

Identification of Modules in Protein-Protein Interaction Networks

  • Chapter
  • First Online:
Book cover Problem Solving Handbook in Computational Biology and Bioinformatics
  • 2669 Accesses

Abstract

In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.

Proteins that make up a functional module tend to interact with each other and form a densely connected subgraph in a PPI network.Motivated by this observation, module identification is often formulated as a problem of partitioning a PPI network into dense subgraphs, which is also known as graph clustering. This chapter begins with a brief introduction to the module identification problem in PPI networks. Then, graph theoretical measures of modularity such as density, clustering coefficient and edge connectivity are introduced. Algorithmic approaches for identifying modules are then presented in a systematic manner. These clustering approaches are broadly categorized as (i) Bottom-up (ii) Top-down (iii) Iterative Improvement and (iv) Flow Based methods. Subsequently, a sample application of modularization, namely, predicting the function of uncharacterized proteins, is briefly discussed. More advanced methods to identify functional modules often integrate other data sources such as gene expression data with PPI data or use multiple networks to find conserved regions in the networks. After an overview on these advanced methods, some exercises are presented to the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall (1993)

    Google Scholar 

  2. Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7, 207 (2006)

    Article  Google Scholar 

  3. Arnau, V., Mars, S., Marin, I.: Iterative cluster analysis of protein interaction data. Bioinformatics 21(3), 364+ (2005)

    Article  Google Scholar 

  4. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Geneontology: tool for the unification of biology. the gene ontology consortium. Nature Genetics 25(1), 25–29 (2000)

    Article  Google Scholar 

  5. Asthana, S., King, O.D., Gibbons, F.D., Roth, F.P.: Methods predicting protein complex membership using probabilistic network reliability. Genome Res 14, 1170–1175 (2004)

    Article  Google Scholar 

  6. Auerbach, D., Thaminy, S., Hottiger, M., Stagljar, I.: The post-genomic era of interactive proteomics: Facts and perspectives. Proteomics 2, 611–623 (2002)

    Article  Google Scholar 

  7. Bader, G.D., Hogue, C.W.: Analyzing yeast protein-protein interaction data obtained from different sources. Nat Biotech 20(10), 991–997 (2002)

    Article  Google Scholar 

  8. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1) (2003)

    Article  Google Scholar 

  9. Bader, J.S.: Greedily building protein networks with confidence. Bioinformatics 19(15), 1869–1874 (2003)

    Article  Google Scholar 

  10. Bauer, S., Grossmann, S., Vingron, M., Robinson, P.N.N.: Ontologizer 2.0 - a multifunctional tool for go term enrichment analysis and data exploration. Bioinformatics (Oxford, England) (2008)

    Google Scholar 

  11. Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 488+ (2006)

    Article  Google Scholar 

  12. Cho, Y.R., Hwang, W., Zhang, A.: Identification of overlapping functional modules in protein interaction networks: Information flow-based approach. In: ICDMW ’06: Proceedings of the Sixth IEEE International Conference on Data Mining - Workshops, pp. 147–152. IEEE Computer Society, Washington, DC, USA (2006)

    Google Scholar 

  13. Chua, H.N., Sung, W.K., Wong, L.: Using indirect protein interactions for the prediction of gene ontology functions. BMC Bioinformatics 8 (2007)

    Article  Google Scholar 

  14. Database, S.G.: Saccharomyces genome database gene ontology termfinder. URL http://db.yeastgenome.org/cgi-bin/GO/goTermFinder

  15. Deng, M., Sun, F., Chen, T.: Assessment of the reliability of protein-protein interactions and protein function prediction. Pac Symp Biocomput pp. 140–151 (2003)

    Google Scholar 

  16. Dutkowski, J., Tiuryn, J.: Identification of functional modules from conserved ancestral protein protein interactions. Bioinformatics 23(13) (2007)

    Article  Google Scholar 

  17. Edwards, A.M., Kus, B., Jansen, R., Greenbaum, D., Greenblatt, J., Gerstein, M.: Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends in Genetics 18(10), 529–536 (2002)

    Article  Google Scholar 

  18. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7), 1575–1584 (2002)

    Article  Google Scholar 

  19. Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graemlin: general and robust alignment of multiple large interaction networks. Genome Res 16(9), 1169–1181 (2006)

    Article  Google Scholar 

  20. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Information Processing Letters 76, 175–181 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402(6761 Suppl) (1999)

    Google Scholar 

  22. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signaling circuits in molecular interaction networks. Bioinformatics 18 Suppl 1 (2002)

    Google Scholar 

  23. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive twohybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98(8), 4569–4574 (2001)

    Article  Google Scholar 

  24. Jansen, R., Greenbaum, D., Gerstein, M.: Relating whole-genome expression data with protein-protein interactions. Genome Research 12, 37–46 (2002)

    Article  Google Scholar 

  25. Kalaev, M., Smoot, M., Ideker, T., Sharan, R.: Networkblast: Comparative analysis of protein networks. Bioinformatics (2008)

    Google Scholar 

  26. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci U S A 100(20), 11,394–11,399 (2003)

    Article  Google Scholar 

  27. Kiel, C., Beltrao, P., Serrano, L.: Analyzing protein interaction networks using structural information. Annual Review of Biochemistry 77(1) (2008)

    Article  Google Scholar 

  28. King, A.D., Przulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004)

    Article  Google Scholar 

  29. Koyutürk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting frequent subgraphs in biological networks. In: Bioinformatics, pp. 200–207 (2004)

    Google Scholar 

  30. Koyutürk, M., Grama, A., Szpankowski, W.: Pairwise local alignment of protein interaction networks guided by models of evolution. In: Lecture Notes in Bioinformatics 3500, pp. 48–65 (2005)

    Google Scholar 

  31. Koyutürk, M., Kim, Y., Subramaniam, S., Szpankowski, W., Grama, A.: Detecting conserved interaction patterns in biological networks. J Comput Biol 13(7), 1299–1322 (2006)

    Article  MathSciNet  Google Scholar 

  32. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama, A.: Pairwise alignment of protein interaction networks. J Comput Biol 13(2), 182–199 (2006)

    Article  MathSciNet  Google Scholar 

  33. Koyutürk, M., Szpankowski, W., Grama, A.: Assessing significance of connectivity and conservation in protein interaction networks. Journal of Computational Biology 14(6), 747–764 (2007)

    Article  MathSciNet  Google Scholar 

  34. Maraziotis, I.A., Dimitrakopoulou, K., Bezerianos, A.: Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics 8, 408 (2007)

    Article  Google Scholar 

  35. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  36. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 96(8), 4285–4288 (1999)

    Article  Google Scholar 

  37. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–5 (2002)

    Article  Google Scholar 

  38. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nature Biotechnology 24(4), 427–433 (2006)

    Article  Google Scholar 

  39. Sharan, R., Ideker, T., Kelley, B., Shamir, R., Karp, R.M.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J Comput Biol 12(6), 835–846 (2005)

    Article  Google Scholar 

  40. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker, T.: From the cover: Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci U S A 102(6), 1974–1979 (2005)

    Article  Google Scholar 

  41. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol Syst Biol 3 (2007)

    Article  Google Scholar 

  42. Slonim, D.K.: From patterns to pathways: gene expression data analysis comes of age. Nat Genet 32 Suppl, 502–508 (2002)

    Article  Google Scholar 

  43. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100(21), 12,123–12,128 (2003)

    Article  Google Scholar 

  44. Stojmirović, A., Yu, Y.K.: Information flow in interaction networks. J Comput Biol 14(8), 1115–1143 (2007)

    Article  MathSciNet  Google Scholar 

  45. Tetko, I.V., Facius, A., Ruepp, A., Mewes, H.W.: Super paramagnetic clustering of protein sequences. BMC Bioinformatics 6, 82 (2005)

    Article  Google Scholar 

  46. Tornow, S., Mewes, H.W.: Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res 31, 6283–6289 (2003)

    Article  Google Scholar 

  47. Ucar, D., Asur, S., Catalyurek, U.V., Parthasarathy, S.: Improving functional modularity in protein-protein interactions graphs using hub-induced subgraphs. Knowledge Discovery in Databases: PKDD 2006 pp. 371–382 (2006)

    Article  Google Scholar 

  48. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Erten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer US

About this chapter

Cite this chapter

Erten, S., Koyutürk, M. (2010). Identification of Modules in Protein-Protein Interaction Networks. In: Heath, L., Ramakrishnan, N. (eds) Problem Solving Handbook in Computational Biology and Bioinformatics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09760-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09760-2_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09759-6

  • Online ISBN: 978-0-387-09760-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics