Improving Peer-to-Peer Transport Paths for Content Distribution

  • Gerhard Hasslinger


Peer-to-peer networks have introduced a distributed communication paradigm, which is useful for many communication services and still accounts for a considerable portion of the Internet traffic. We discuss the efficiency of peer-to-peer content distribution as compared to server based overlays, which support search engines and many other popular web sites. Random source selection schemes of peer-to-peer protocols lead to long transmission paths and unnecessary high traffic load on inter-domain links. This chapter compares several recent proposals for a local exchange of popular data in the Internet with different implications for network resource efficiency, service provisioning and usage.

Key words

Peer-to-peer networks Overlays Content delivery Application layer traffic engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Agrawal, A. Feldmann and C. Schneideler, Can ISPs and P2P users cooperate for improved performance? ACM SIGCOMM Computer Communication Review 37 (2007) 31–40Google Scholar
  2. 2.
    R. Albert and A.-L. Barabasi, Statistical Mechanics of Complex Networks, Review of Modern Physics 74, 47 (2002) 1–54MathSciNetGoogle Scholar
  3. 3.
    BBC iPlayer <> (since 2007)
  4. 4.
    E. Biersack etal., Overlay architectures for file distribution: Fundamental analysis for homogeneous and heterogeneous cases, Computer Networks 51 (2007) 901–917MATHCrossRefGoogle Scholar
  5. 5.
    R. Bindal etal., Improving traffic locality in BitTorrent via biased neighbor selection, ICDCS (2006)Google Scholar
  6. 6.
    L. Breslau etal., Web caching and Zipf-like distributions: Evidence and implications, Proc. IEEE Infocom (1999)Google Scholar
  7. 7.
    X. Cheng, C. Dale and J. Liu, Statistics and social network of YouTube videos, IEEE Proc. International Workshop on Quality of Service (IWQoS), Twente, The Netherlands (2008) 249–258Google Scholar
  8. 8.
    K. Cho, K. Fukuda, H. Esaki and A. Kato, The impact and implications of the growth in residential user-to-user traffic, ACM Sigcomm Conf., Pisa (2006) <>
  9. 9.
    Cisco Systems, Global IP traffic forecast and methodology, White paper (2008) <>
  10. 10.
    B. Cohen, Incentives build robustness in BitTorrent, <> (2003)Google Scholar
  11. 11.
    F. Dabek, R. Cox, F. Kaashoek and R. Morris, Vivaldi: A decentralized network coordinate system, ACM Sigcomm Conf., Portland, USA (2004) <>Google Scholar
  12. 12.
    Ethernet Alliance, Higher Speed Ethernet Study Group (2008) <>
  13. 13.
    M. Eubanks, The video tsunami: Internet television, IPTV and the coming wave of video on the Internet, Pleanry talk, 71. IETF meeting (2008) <>
  14. 14.
    P. Gill, YouTube workload characterization, Master Thesis, Univ. of Calgary, Canada (2008) <>Google Scholar
  15. 15.
    G. Hasslinger, ISP Platforms under a heavy peer-to-peer workload, Proc. Peer-to-Peer Systems and Applications, Eds.: R. Steinmetz and K. Wehrle, Springer LNCS 3485 (2005) 369–382Google Scholar
  16. 16.
    G. Hasslinger, F. Guillemin, J. Ferreira and U. Halldorsson, The impact of peer-to-peer networking on network operators and Internet service providers, Eurescom study report P1553 (2005) <>
  17. 17.
    G.Hasslinger and S. Kempken, Applying random walks in structured and self-organizing networks: Evaluation by transient analysis, PIK– Special Issue on Self-Organizing Networks, Saur Verlag, Vol. 31 (2008) 17–23Google Scholar
  18. 18.
    G. Hasslinger, J. Mende, R. Geib, T. Beckhaus and F. Hartleb: Measurement and characteristics of traffic in broadband access networks, Proc. 20. Internat. Teletraffic Congress, Ottawa, Canada, Springer, LNCS 4516 (2007) 998–1010Google Scholar
  19. 19.
    G. Hasslinger, S. Schnitter and M. Franzke, The Efficiency of Traffic Engineering with Regard to Failure Resilience, Telecommunication Systems Vol. 29/2, Springer (2005) 109–130CrossRefGoogle Scholar
  20. 20.
    Y. Hu, D. Chiu and J. Lui, Application identification based on network behavioral profiles, Proc. 16. IEEE Workshop on Quality of Service (IWQoS’08) Twente / Enschede, The Nederlands (2008) 239–248Google Scholar
  21. 21.
    Internet Engineering Task Force (IETF), ALTO BoF: Application layer traffic optimization, <> and <>
  22. 22.
    J. Ledlie, P. Gardner and M. Seltzer, Network coordinates in the wild, Proc. USENIX Conf. (2007) 299–311Google Scholar
  23. 23.
    A. Odlyzko, Internet traffic growth: Sources and implications, Proc. SPIE Vol. 5247 (2003) 1–15CrossRefGoogle Scholar
  24. 24.
    The Minnesota Internet traffic studies (MINTS) <> continuously updated until 2008
  25. 25.
    C. Rossenhövel, P2P filters ready for Internet prime time? <>
  26. 26.
    O. Saleh and M. Hefeeda, Modeling and caching of P2P traffic, Proc. IEEE Internat. Conf. on Network Protocols (2006)Google Scholar
  27. 27.
    J. Schroeder-Bernhardi, Analysis of the communication and traffic in P2P networks including web caches, Master Thesis, KOM-D-260, Univ. of Darmstadt, Germany (2006)Google Scholar
  28. 28.
    H.M. Sigurdsson, U.R. Halldorsson and G. Hasslinger: Potentials and Challenges of Peer-to-Peer Based Content Distribution, Telematics and Informatics, Elsevier, Vol. 24 (2007) 348–365CrossRefGoogle Scholar
  29. 29.
    A.-J. Su, D.R. Choffnes, A. Kuzmanovic and F.E. Bustamante, Drafting behind Akamai, Proc. ACM SIGCOMM, Pisa, Italy (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.T-SystemsDarmstadtGermany

Personalised recommendations