Advertisement

Building Patient-Specific Physical and Physiological Computational Models from Medical Images

  • H. DelingetteEmail author
  • N. Ayache

Abstract

We describe a hierarchy of computational models of the human body operating at the geometrical, physical and physiological levels. Those models can be coupled with medical images which play a crucial role in the diagnosis, planning, control and follow-up of therapy. In this paper, we discuss the issue of building patient-specific physical and physiological models from macroscopic observations extracted from medical images. We illustrate the topic of model personalization with concrete examples in brain shift modeling, hepatic surgery simulation, cardiac and tumor growth modeling. We conclude this article with scientific perspectives.

Keywords

Biomechanical Model Physiological Model Surgery Simulation Brain Shift White Matter Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. J. Ackerman. The visible human project. Proceedings of the IEEE: Special Issue on Surgery Simulation, 86(3):504–511, Mar. 1998.CrossRefGoogle Scholar
  2. 2.
    R. Aliev and A. Panfilov. A simple two-variable model of cardiac excitation. Chaos, Solitons & Fractals, 7(3):293–301, 1996.CrossRefGoogle Scholar
  3. 3.
    N. Ayache, editor. Computational Models for the Human Body. Handbook of Numerical Analysis (Ph. Ciarlet series editor). Elsevier, 2004. 670 pages.Google Scholar
  4. 4.
    N. Ayache, O. Clatz, H. Delingette, G. Malandain, X. Pennec, and M. Sermesant. Asclepios: a research project-team at inria for the analysis and simulation of biomedical images. In From semantics to computer science: essays in honor of Gilles Kahn. Cambridge University Press, 2008.Google Scholar
  5. 5.
    M. Belik, T. Usyk, and A. McCulloch. Computational methods for cardiac electrophysiology. In N. Ayache, editor, Computational Models for the Human Body, pages 129–187. Elsevier, 2004.Google Scholar
  6. 6.
    J. Bestel, F. Clément, and M. Sorine. A biomechanical model of muscle contraction. In Proc. of MICCAI’01, volume 2208, pages 1159–1161. Springer, 2001.Google Scholar
  7. 7.
    J.-D. Boissonnat, R. Chaine, P. Frey, G. Malandain, F. Nicoud, S. Salmon, E. Saltel, and M. Thiriet. From arteriographies to computational flow in saccular aneurisms: the INRIA experience. Medical Image Analysis, 9(2):133–143, Apr. 2005.CrossRefGoogle Scholar
  8. 8.
    T. Chanthasopeephan, J. P. Desai, and A. Lau. Measuring forces in liver cutting: New equipment and experimental results. Annals of Biomedical Engineering, 31(11):1372–1382, 2003.CrossRefGoogle Scholar
  9. 9.
    O. Clatz, P. Bondiau, H. Delingette, G. Malandain, M. Sermesant, S. K. Warfield, and N. Ayache. In silico tumor growth: Application to glioblastomas. In Proc. of MICCAI 2004, volume 3217 of LNCS, pages 337–345. Springer Verlag, September 2004.Google Scholar
  10. 10.
    O. Clatz, H. Delingette, E. Bardinet, D. Dormont, and N. Ayache. Patient specific biomechanical model of the brain: Application to parkinson’s disease procedure. In N. Ayache and H. Delingette, editors, International Symposium on Surgery Simulation and Soft Tissue Modeling (IS4TM’03), volume 2673, pages 321–331. Springer-Verlag, 2003.Google Scholar
  11. 11.
    T. Cootes, C. Taylor, A. Lanitis, D. Cooper, and J. Graham. Building and using flexible models incorporating grey-level information. In Proc. of the Int. Conf. on Computer Vision (ICCV’93), pages 242–245, 1993.Google Scholar
  12. 12.
    S. Cotin, H. Delingette, and N. Ayache. Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions On Visualization and Computer Graphics, 5(1):62–73, January-March 1999.CrossRefGoogle Scholar
  13. 13.
    S. Cotin, H. Delingette, and N. Ayache. A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. The Visual Computer, 16(8):437–452, 2000.CrossRefzbMATHGoogle Scholar
  14. 14.
    G. Debunne, M. Desbrun, M.-P. Cani, and A. H. Barr. Dynamic real-time deformations using space and time adaptive sampling. Computer Graphics Proceedings, Aug 2001. Proceedings of SIGGRAPH’01.Google Scholar
  15. 15.
    H. Delingette and N. Ayache. Soft tissue modeling for surgery simulation. In N. Ayache, editor, Computational Models for the Human Body, Handbook of Numerical Analysis (Ed: Ph. Ciarlet), pages 453–550. Elsevier, 2004.Google Scholar
  16. 16.
    H. Delingette, X. Pennec, L. Soler, J. Marescaux, and N. Ayache. Computational models for image guided, robot-assisted and simulated medical interventions. Proceedings of the IEEE, 94(9):1678– 1688, September 2006.CrossRefGoogle Scholar
  17. 17.
    M. Ferrant, A. Nabavi, B. Macq, P. Black, F. Jolesz, R. Kikinis, and S. Warfield. Serial registration of intraoperative MR images of the brain. Medical Image Analysis, 2002.Google Scholar
  18. 18.
    P. Fillard, V. Arsigny, X. Pennec, K. M. Hayashi, P. M. Thompson, and N. Ayache. Measuring brain variability by extrapolating sparse tensor fields measured on sulcal lines. Neuroimage, 34(2):639–650, January 2007.CrossRefGoogle Scholar
  19. 19.
    R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1:445–466, 1961.CrossRefGoogle Scholar
  20. 20.
    C. Forest, H. Delingette, and N. Ayache. Surface contact and reaction force models for laparoscopic simulation. In International Symposium on Medical Simulation, volume 3078 of LNCS, pages 168–176. Springer-Verlag, June 2004.Google Scholar
  21. 21.
    C. Forest., H. Delingette, and N. Ayache. Removing tetrahedra from manifold tetrahedralisation: application to real-time surgical simulation. Medical Image Analysis, 9(2):113–122, Apr. 2005.Google Scholar
  22. 22.
    E. Haug, H.-Y. Choi, S. Robin, and M. Beaugonin. Human models for crash and impact simulation. In N. Ayache, editor, Computational Models for the Human Body, pages 231–452. Elsevier, 2004.Google Scholar
  23. 23.
    D. Hawkes, D. Barratt, J. Blackall, C. Chan, P. Edwards, K. Rhode, G. Penney, J. McClelland, and D. Hill. Tissue deformation and shape models in image-guided interventions: a discussion paper. Medical Image Analysis, 9(2):163–175, Apr. 2005.CrossRefGoogle Scholar
  24. 24.
    P. Hunter and T. Borg. Integration from proteins to organs: the Physiome project. Nature Reviews Molecular Cell Biology, 4:237–243, 2003.CrossRefGoogle Scholar
  25. 25.
    J. Kaye, F. Primiano, and D. Metaxas. A 3D virtual environment for modeling mechanical cardiopulmonary interactions. Medical Image Analysis, 2(2):1–26, 1997.Google Scholar
  26. 26.
    A. E. Kerdok, S. M. Cotin, M. P. Ottensmeyer, A. M. Galea, R. D. Howe, and S. L. Dawson. Truth Cube: Establishing Physical Standards for Real Time Soft Tissue Simulation. Medical Image Analysis, 7:283–291, 2003.CrossRefGoogle Scholar
  27. 27.
    A. E. Kerdok, M. P. Ottensmeyer, and R. D. Howe. Effects of perfusion on the viscoelastic characteristics of liver. Journal of Biomechanics, 39(12):2221–2231, 2006.CrossRefGoogle Scholar
  28. 28.
    E. Konukoglu, O.Clatz, P.-Y. Bondiau, M. Sermesant, H. Delingette, and N. Ayache. Towards an identification of tumor growth parameters from time series of images. In N. Ayache, S. Ourselin, and A. Maeder, editors, Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), volume 4791 of LNCS, pages 549–556, Brisbane, Australia, October 2007. Springer.Google Scholar
  29. 29.
    E. Konukoglu, M. Sermesant, O. Clatz, J.-M. Peyrat, H. Delingette, and N. Ayache. A recursive anisotropic fast marching approach to reaction diffusion equation: Application to tumor growth modeling. In Proceedings of the 20th International Conference on Information Processing in Medical Imaging (IPMI’07), volume 4584 of LNCS, pages 686–699, 2-6 July 2007.Google Scholar
  30. 30.
    C. MacAulay, P. Lane, and R. Richards-Kortum. In vivo pathology: microendoscopy as a new endoscopic imaging modality. Gastrointestinal Endoscopy Clinics of North America, 14: 595–620, 2004.CrossRefGoogle Scholar
  31. 31.
    A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman. Magnetic resonance elastography: Non-invasive mapping of tissue elasticity. Medical Image Analysis, 5(4):237–254, Dec. 2001.CrossRefGoogle Scholar
  32. 32.
    M. Miga, K. Paulsen, J. Lemry, F. Kennedy, S. Eisner, A. Hartov, and D. Roberts. Model-updated image guidance: Initial clinical experience with gravity-induced brain deformation. IEEE Transactions on Medical Imaging, 18(10):866–874, 1999.CrossRefGoogle Scholar
  33. 33.
    K. Miller. Constitutive modelling of abdominal organs. Journal of Biomechanics, 33(3): 367–373, 2000.CrossRefGoogle Scholar
  34. 34.
    M. I. Miller. Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage, 23(Supplement 1):S19–S33, 2004. Special Issue: Mathematics in Brain Imaging.Google Scholar
  35. 35.
    P. Moireau, D. Chapelle, and L. T. P. Joint state and parameter estimation for distributed mechanical systems. Computer Methods in Applied Mechanics and Engineering, 197:659–677, 2008.Google Scholar
  36. 36.
    V. Moreau-Villéger, H. Delingette, M. Sermesant, H. Ashikaga, O. Faris, E. McVeigh, and N. Ayache. Building maps of local apparent conductivity of the epicardium with a 2D electrophysiological model of the heart. IEEE Transactions on Biomedical Engineering, 53(8):1457–1466, Aug. 2006.CrossRefGoogle Scholar
  37. 37.
    A. Nava, E. Mazza, F. Kleinermann, N. Avis, and J. McClure. Determination of the mechanical properties of soft human tissues through aspiration experiments. In Proc. of Conference on Medical Robotics, Imaging And Computer Assisted Surgery: MICCAI 2003, LNCS, Montreal, Canada, Nov. 2003.Google Scholar
  38. 38.
    D. Noble. Modeling the Heart, from genes to cells to the whole organ. Science, 295:1678–1682, 2002.CrossRefGoogle Scholar
  39. 39.
    M. P. Ottensmeyer, A. E. Kerdok, R. D. Howe, and S. L. Dawson. The effects of testing environment on the viscoelastic properties of soft tissues. In International Symposium on Medical Simulation, pages 9–18, June 2004.Google Scholar
  40. 40.
    G. Picinbono, H. Delingette, and N. Ayache. Non-Linear Anisotropic Elasticity for Real-Time Surgery Simulation. Graphical Models, 65(5):305–321, Sept. 2003.CrossRefzbMATHGoogle Scholar
  41. 41.
    M. Powell. Uobyqa: unconstrained optimization by quadratic approximation. Mathematical Programming, 92(3):555–582, May 2002.CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    A. Quarteroni and L. Formaggia. Mathematical modeling and numerical simulation of the cardiovascular system. In N. Ayache, editor, Computational Models for the Human Body, pages 3–128. Elsevier, 2004.Google Scholar
  43. 43.
    J. Schnabel, C. Tanner, A. Castellano-Smith, A. Degenhard, M. Leach, D. Hose, D. Hill, and D. Hawkes. Validation of non-rigid image registration using finite element methods: application to breast MR images. IEEE Trans. Medical Imaging, 22(2):238–247, 2003.CrossRefGoogle Scholar
  44. 44.
    M. Sermesant, H. Delingette, and N. Ayache. An electromechanical model of the heart for image analysis and simulation. IEEE Transactions on Medical Imaging, 25(5):612–625, 2006.CrossRefGoogle Scholar
  45. 45.
    M. Sermesant, P. Moireau, O. Camara, J. Sainte-Marie, R. Andriantsimiavona, R. Cimrman, D. G. Hill, D. Chapelle, and R. Razavi. Cardiac function estimation from mri using a heart model and data assimilation: Advances and difficulties. In Functional Imaging and Modeling of the Heart (FIMH’05), pages 325–337, 2005.Google Scholar
  46. 46.
    M. Sermesant, K. Rhode, A. Anjorin, S. Hedge, G. Sanchez-Ortiz, D. Rueckert, P. Lambiase, C. Bucknall, D. Hill, and R. Razavi. Simulation of the electromechanical activity of the heart using xmr interventional imaging. In Third International Conference on Medical Robotics, Imaging And Computer Assisted Surgery: MICCAI 2004, pages 786–794, Oct. 2004.Google Scholar
  47. 47.
    O. Skrinjar, A. Nabavi, and J. Duncan. Model-driven brain shift compensation. Medical Image Analysis, 6(4):361–373, 2002.CrossRefGoogle Scholar
  48. 48.
    K. Swanson, E. Alvord, and J. Murray. Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. British Journal of Cancer, 86(1):14–18, 2002.CrossRefGoogle Scholar
  49. 49.
    P. M. Thompson, M. I. Miller, J. T. Ratnanather, R. A. Poldrack, and T. E. Nichols. Guest Editorial. NeuroImage, 23(Supplement 1):S1, 2004. Special Issue: Mathematics in Brain Imaging.Google Scholar
  50. 50.
    T. Vercauteren, N. Ayache, N. Savoire, G. Malandain, and A. Perchant. Processing of in vivo fibered confocal microscopy video sequences. In J. Rittscher, R. Machiraju, and S. T. C. Wong, editors, Microscopic Image Analysis for Life Science Applications. Chapter 19, pages 441–463, Artech House, 2008.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.InriaSophia AntipolisFrance

Personalised recommendations