Statistical Atlases

  • C. DavatzikosEmail author
  • R. Verma
  • D. Shen


This chapter discusses the general concept of statistical atlases built from medical images. A statistical atlas is a quantitative reflection of normal variability in anatomy, function, pathology, or other imaging measurements, and it allows us to establish a baseline against which abnormal images are to be compared for diagnostic or treatment planning purposes. Constructing a statistical atlas relies on a fundamental building block, namely deformable registration, which maps imaging data from many individuals to a common coordinate system, so that statistics of normal variability, as well as abnormal deviations from it, can be performed. 3D and 4D registration methods are discussed. This chapter also discusses the statistical analyses applied to co-registered normative images, and finally briefly touches upon use of machine learning for detection of imaging patterns that distinctly deviate from the normative range to allow for individualized classification.


Attribute Vector Diffusion Tensor Image Data Manifold Learning Deformable Image Registration Shape Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Alexander and J. Gee. Elastic matching of diffusion tensor images. Computer Vision and Image Understanding, 77:233–250, 1999.CrossRefGoogle Scholar
  2. 2.
    J. Ashburner and K. Friston. Voxel-based morphometry: the methods. Neuroimage, 11(6): 805–821, 2000.CrossRefGoogle Scholar
  3. 3.
    J. Ashburner, C. Hutton, R. Frackowiak, I. Johnsrude, C. Price, and K. Friston. Identifying global anatomical differences: Deformation-based morphometry. Human Brain Mapping, 6(5-6):348–357, 1998.CrossRefGoogle Scholar
  4. 4.
    P. J. Basser and C. Pierpaoli. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor mri. Journal of Magnetic Resonance, Series B, 111:209–219, 1996.Google Scholar
  5. 5.
    S. F. K. Boesen, J. Huang, J. Germann, J. Stern, D. L. Collins, A. C. Evans, and D. A. Rottenberg. Inter-rater reproducibility of 3d cortical and subcortical landmark points. In 11th Annual Meeting of the Organization for Human Brain Mapping, Toronto, Canada, 2005.Google Scholar
  6. 6.
    F. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, 1989.CrossRefzbMATHGoogle Scholar
  7. 7.
    H. Braak, E. Braak, J. Bohl, and H. Bratzke. Evolution of alzheimer’s disease related cortical lesions. Journal of Neural Transmission. Supplementum, 54:97–106, 1998.CrossRefGoogle Scholar
  8. 8.
    R. Bryan, C. Davatzikos, M. Vaillant, J. Prince, S. Letovsky, R. Raghavan, W. Nowinski, G. Salamon, N. Murayama, O. Levrier, and M. Zilbovicius. Creation of population-based anatomic atlases with a brain image database. In First International Conference on Functional Brain Mapping, page 72, 1995.Google Scholar
  9. 9.
    C. Burges. Geometric methods for feature extraction and dimensional reduction. In L. Rokach and O. Maimon, editors, Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers’. Kluwer Academic Publishers, 2005.Google Scholar
  10. 10.
    O. Camara, R. I. Scahill, J. A. Schnabel, W. R. Crum, G. R. Ridgway, D. L. G. Hill, and N. C. Fox. Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal data,. In MICCAI, pages 785–792, 2007,.Google Scholar
  11. 11.
    G. Christensen and H. Johnson. Consistent image registration. IEEE Transactions on Medical Imaging, 20(7):568–582, 2001.CrossRefGoogle Scholar
  12. 12.
    G. Christensen, R. Rabbitt, and R. Miller. 3d brain mapping using a deformable neuroanatomy. Physics in medicine and biology, 39:609–618, 1994.CrossRefGoogle Scholar
  13. 13.
    G. E. Christensen, X. Geng, J. G. Kuhl, J. Bruss, T. J. Grabowski, I. A. Pirwani, M. W. Vannier, J. S. Allen, and H. Damasio. Introduction to the non-rigid image registration evaluation project (nirep). In WBIR., pages 128–135, 2006.Google Scholar
  14. 14.
    G. E. Christensen, H. J. Johnson, and M. W. Vannier. Synthesizing average 3d anatomical shapes. NeuroImage, 32(1):146–158, 2006.CrossRefGoogle Scholar
  15. 15.
    H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 89(2-3):114–141, 2003.CrossRefzbMATHGoogle Scholar
  16. 16.
    H. Chui, L. Win, R. Schultz, J. Duncan, and A. Rangarajan. A unified feature registration method for brain mapping. In Information Processing in Medical Imaging, pages 300–314, Davis, CA, USA, 2001.Google Scholar
  17. 17.
    M. Chung, K. Worsley, T. Paus, C. Cherif, D. Collins, J. Giedd, J. Rapoport, and A. Evans. A unified statistical approach to deformation-based morphometry. Neuroimage, 14(3): 595–606, 2001.CrossRefGoogle Scholar
  18. 18.
    A. Collignon. Multi-modality medical image registration by maximization of mutual information. Ph.d. dissertation, Catholic Univ. Leuven, 1998.Google Scholar
  19. 19.
    A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal. Automated multi-modality image registration based on information theory. In Y. Bizais, C. Barillot, and R. D. Paola, editors, Information Processing in Medical Imaging, pages 263–274. Kluwer, Dordrecht, The Netherlands, 1995.Google Scholar
  20. 20.
    D. Collins and A. Evans. Automatic 3d estimation of gross morphometric variability in the human brain. Neuroimage, 3(3):S129, 1996.Google Scholar
  21. 21.
    D. Collins, P. Neelin, T. Peters, and A. Evans. Automatic 3d intersubject registration of mr volumetric data in standardized talairach space. Journal of Computer Assisted Tomography, 18:192–205, 1994.CrossRefGoogle Scholar
  22. 22.
    L. Collins, T. Peters, W. Dai, and A. Evans. Model-based segmentation of individual brain structures from mri data. In Proceedings of SPIE Conference on Visualization in Biomedical Computing, volume 1808, pages 10–23, 1992.Google Scholar
  23. 23.
    J. Csernansky, L. Wang, S. Joshi, J. Ratnanather, and M. Miller. Computational anatomy and neuropsychiatric disease: probabilistic assessment of variation and statistical inference of group difference, hemispheric asymmetry, and time-dependent change. NeuroImage, 23(1): 56–68, 2004.CrossRefGoogle Scholar
  24. 24.
    C. Davatzikos. Spatial transformation and registration of brain images using elastically deformable models. Computer Vision and Image Understanding, 66:207–222, 1997.CrossRefGoogle Scholar
  25. 25.
    C. Davatzikos. Voxel based morphometric analysis using shape transformations. In M. F. Glabus, editor, International Review of Neurobiology, Neuroimaging Part A, volume 66. Elsevier Inc., 2005.Google Scholar
  26. 26.
    C. Davatzikos and R. Bryan. Using a deformable surface model to obtain a shape representation of the cortex. IEEE Transactions on Medical Imaging, 15(6):785–795, 1996.CrossRefGoogle Scholar
  27. 27.
    C. Davatzikos, Y. Fan, X. Wu, D. Shen, and S. M. Resnick. Detection of prodromal alzheimer’s disease via pattern classification of mri. Neurobiology of Aging, page in press, 2007.Google Scholar
  28. 28.
    C. Davatzikos, A. Genc, D. Xu, and S. Resnick. Voxel-based morphometry using the ravens maps: Methods and validation using simulated longitudinal atrophy. NeuroImage, 14(6): 1361–1369, 2001.CrossRefGoogle Scholar
  29. 29.
    C. Davatzikos, M. Vaillant, S. Resnick, J. Prince, S. Letovsky, and R. Bryan. A computerized approach for morphological analysis of the corpus callosum. Journal of Computer Assisted Tomography, 20:88–97, 1996.CrossRefGoogle Scholar
  30. 30.
    C. Davatzikos and R. Verma. Constructing statistical brain atlases from diffusion tensor fields. In ISMRM Workshop on methods for quantitative diffusion of human brain, Lake Louise, Alberta, Canada, 2005.Google Scholar
  31. 31.
    B. Dawant, S. Hartmann, and S. Gadamsetty. Brain atlas deformation in the presence of large space-occupying tumours. In MICCAI, volume 1679, pages 589–596, 1999.Google Scholar
  32. 32.
    S. Duchesne, A. Caroli, C. Geroldi, G. Frisoni, and D. Collins. Predicting clinical variable from mri features: application to mmse in mci. In MICCAI, volume 8, pages 392–399, 2005.Google Scholar
  33. 33.
    Y. Fan, D. Shen, and C. Davatzikos. Classification of structural images via high-dimensional image warping, robust feature extraction, and svm. In J. S. Duncan and G. Gerig, editors, MICCAI, volume 3749 / 2005 of Lecture Notes in Computer Science, pages 1–8, Palm Springs, California, USA, 2005. Springer Berlin / Heidelberg.Google Scholar
  34. 34.
    Y. Fan, D. Shen, and C. Davatzikos. Decoding cognitive states from fmri images of subjects by machine learning and multivariate classification. In IEEE Workshop on Mathematical Methods in Biomedical Image (MMBIA 2006), New York City, NY, USA, 2006.Google Scholar
  35. 35.
    Y. Fan, D. Shen, R. C. Gur, R. E. Gur, and C. Davatzikos. Compare: Classification of morphological patterns using adaptive regional elements. IEEE Transactions on Medical Imaging, 26(1):93–105, 2007.CrossRefGoogle Scholar
  36. 36.
    M. Ferrant, S. Warfield, C. Guttman, R. Mulkern, F. Jolesz, and R. Kikinis. 3d image matching using a finite element based elastic deformation model. In MICCAI, pages 202–209, 1999.Google Scholar
  37. 37.
    P. T. Fletcher and S. Joshi. Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In Computer Vision Approaches to Medical Image Analysis, volume 3117 of LNCS: CVAMIA, pages 87–98, 2004.Google Scholar
  38. 38.
    P. Freeborough and N. Fox. Modeling brain deformations in alzheimer’s disease by fluid registration of serial 3d mr images. Journal of Computer Assisted Tomography, 22:838–843, 1998.CrossRefGoogle Scholar
  39. 39.
    K. Friston, J. Ashburner, C. Frith, J. Poline, J. Heather, and R. Frackowiak. Spatial registration and normalization of images. Human Brain Mapping, 2:165–189, 1995.CrossRefGoogle Scholar
  40. 40.
    K. Friston, A. Holmes, K. Worsley, J. Poline, C. Frith, and R. Frackowiak. Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2(4):189–210, 1995.CrossRefGoogle Scholar
  41. 41.
    J. Gee, C. Barillot, L. Briquer, D. Haynor, and R. Bajcsy. Matching structural images of the human brain using statistical and geometrical image features. Proc. SPIE Visualization in Biomedical Computing, 2359:191–204, 1994.Google Scholar
  42. 42.
    J. Gee, M. Reivich, and R. Bajcsy. Elastically deforming 3d atlas to match anatomical brain images. Journal of Computer Assisted Tomography, 17:225–236, 1993.CrossRefGoogle Scholar
  43. 43.
    C. R. Genovese, N. A. Lazar, and T. Nichols. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15(4):870–878, 2002.CrossRefGoogle Scholar
  44. 44.
    G. Gerig, M. Styner, and J. Lieberman. Shape versus size: Improved understanding of the morphology of brain structures,. In MICCAI, Utrecht, the Netherlands, 2001. Kluver.Google Scholar
  45. 45.
    P. Golland, B. Fischl, M. Spiridon, N. Kanwisher, R. Buckner, M. Shenton, R. Kikinis, A. Dale, and W. Grimson. Discriminative analysis for image-based studies. In R. K. T. Dohi, editor, MICCAI, volume LNCS 2488, pages 508–515, Tokyo, Japan, 2002. Springer-Verlag GmbH.Google Scholar
  46. 46.
    P. Golland, W. Grimson, and R. Kikinis. Statistical shape analysis using fixed topology skeletons: corpus callosum study. Lecture Notes in Computer Science, 1613:382–387, 1999.CrossRefGoogle Scholar
  47. 47.
    P. Golland, W. E. L. Grimson, M. Shenton, and R. Kikinis. Deformation analysis for shape based classification. Lecture Notes in Computer Science, 2082:517–530, 2001.CrossRefGoogle Scholar
  48. 48.
    H. Johnson and G. Christensen. Landmark and intensity-based consistent thin-plate spline image registration. In Proceedings of the Conference on Information Processing in Medical Imaging, LNCS, volume 2081, pages 329–343, 2001.Google Scholar
  49. 49.
    S. Joshi, M. Miller, G. Christensen, A. Banerjee, T. Coogan, and U. Grenander. Hierarchical brain mapping via a generalized dirichlet solution for mapping brain manifolds. Proceedings of the SPIE Conference on Geom. Methods in Applied Imaging, 2573:278–289, 1995.MathSciNetGoogle Scholar
  50. 50.
    S. Joshi, S. Pizer, P. Fletcher, A. Thall, and G. Tracton. Multi-scale 3-d deformable model segmentation based on medial description. Lecture Notes in Computer Science, 2082:64–77, 2001.CrossRefGoogle Scholar
  51. 51.
    B. Karacali and C. Davatzikos. Simulation of tissue atrophy using a topology preserving transformation model. IEEE Transactions on Medical Imaging, 25(5):649–652, 2006.CrossRefGoogle Scholar
  52. 52.
    P. Khurd, R. Verma, and C. Davatzikos. On characterizing and analyzing diffusion tensor images by learning their underlying manifold structure. In IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis, Ney York, NY, 2006.Google Scholar
  53. 53.
    P. Khurd, R. Verma, and C. Davatzikos. Kernel-based manifold learning for statistical analysis of diffusion tensor images. In Information Processing in Medical Imaging (IPMI), volume 4584, pages 581–593, Netherlands, 2007.Google Scholar
  54. 54.
    M. Kubicki, R. W. McCarley, C. F. Westin, H. J. Park, S. Maier, R. Kikinis, F. A. Jolesz, and M. E. Shenton. A review of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatric Research, 41(1-2):15–30, 2007.CrossRefGoogle Scholar
  55. 55.
    M. Kubicki, M. E. Shenton, D. F. Salisbury, Y. Hirayasu, K. Kasai, R. Kikinis, F. A. Jolesz, and R. W. McCarley. Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage, 17(4):1711–1719, 2002.CrossRefGoogle Scholar
  56. 56.
    Z. Lao, D. Shen, and C. Davatzikos. Statistical shape model for automatic skull-stripping of brain images. In 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pages 855–858, Washington, D.C., 2002.Google Scholar
  57. 57.
    Z. Lao, D. Shen, Z. Xue, B. Karacali, S. Resnick, and C. Davatzikos. Morphological classification of brains via high-dimensional shape transformations and machine learning methods. Neuroimage, 21(1):46–57, 2004.CrossRefGoogle Scholar
  58. 58.
    C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras. Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor mri processing. Journal of Mathematical Imaging and Vision [Special issue Mathematics and Image Analysis], 2006 (to appear).Google Scholar
  59. 59.
    Y. Liu, L. Teverovskiy, O. Carmichael, R. Kikinis, M. Shenton, C. Carter, V. Stenger, S. Davis, H. Aizenstein, J. Becker, O. Lopez, and C. Meltzer. Discriminative mr image feature analysis for automatic schizophrenia and alzheimer’s disease classification. In C. Barillot, D. R. Haynor, and P. Hellier, editors, MICCAI, volume LNCS 3216, pages 393–401, Saint-Malo, France, 2004. Springer-Verlag GmbH.Google Scholar
  60. 60.
    M. Miller, G. Christensen, Y. Amit, and U. Grenander. Mathematical textbook of deformable neuroanatomies. Proceedings of the National Academy of Sciences, 90:11944–11948, 1993.CrossRefzbMATHGoogle Scholar
  61. 61.
    S. Moffat, C. Szekely, A. Zonderman, N. Kabani, and S. Resnick. Longitudinal change in hippocampal volume as a function of apolipoprotein e genotype. neurology 2000;. Neurology, 55(1):134–136–, 2000.Google Scholar
  62. 62.
    A. Mohamed, D. Shen, and C. Davatzikos. Deformable registration of brain tumor images via a statistical model of tumor-induced deformation. In J. S. Duncan and G. Gerig, editors, MICCAI, volume 3750 / 2005 of Lecture Notes in Computer Science, pages 263–270, Palm Springs, CA, 2005. Springer-Verlag GmbH.Google Scholar
  63. 63.
    J. Mourao-Miranda, A. L. Bokde, C. Born, H. Hampel, and M. Stetter. Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional mri data. Neuroimage, 28(4):980–995, 2005.CrossRefGoogle Scholar
  64. 64.
    T. Nichols and A. Holmes. Non-parametric permutation tests for functional neuroimaging: A primer with examples. In Human Brain Mapping, volume 15, pages 1–25, 2001.Google Scholar
  65. 65.
    S. Pizer, D. S. Fritsch, P. A. Yushkevich, V. E. Johnson, and E. L. Chaney. Segmentation, registration and measurement of shape variation via image object shape. IEEE Transactions on Medical Imaging, 18(10):851–865, 1999.CrossRefGoogle Scholar
  66. 66.
    S. Resnick, A. Goldszal, C. Davatzikos, S. Golski, M. Kraut, E. Metter, R. Bryan, and A. Zonderman. One-year age changes in mri brain volumes in older adults. Cerebral Cortex, 10(5):464–472, 2000.CrossRefGoogle Scholar
  67. 67.
    J. Rexilius, S. Warfield, C. Guttman, X. Wei, R. Benson, L. Wolfson, M. Shenton, H. Handels, and R. Kikinis. A novel nonrigid registration algorithm and applications. In MICCAI, pages 202–209, 1999.Google Scholar
  68. 68.
    D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes. Non-rigid registration using free-form deformations: Application to breast mr images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999.CrossRefGoogle Scholar
  69. 69.
    S. Sandor and R. Leahy. Surface based labelling of cortical anatomy using a deformable atlas. IEEE Transactions on Medical Imaging, 16(1):41–54, 1997.CrossRefGoogle Scholar
  70. 70.
    B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond (Adaptive Computation and Machine Learning). The MIT Press;, 1st edition (december 15, 2001) edition, 2001.Google Scholar
  71. 71.
    D. Shen. 4d image warping for measurement of longitudinal brain changes. In Proceedings of the IEEE International Symposium on Biomedical Imaging, volume 1, Arlington, Va., 2004.Google Scholar
  72. 72.
    D. Shen. Image registration by hierarchical matching of local spatial intensity histograms. In C. Barillot, D. R. Haynor, and P. Hellier, editors, MICCAI, volume 3216 / 2004 of Lecture Notes in Computer Science, pages 582–590, St. Malo, France, 2004. Springer-Verlag GmbH.Google Scholar
  73. 73.
    D. Shen and C. Davatzikos. Hammer: Hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21(11):1421–1439, 2002.CrossRefGoogle Scholar
  74. 74.
    D. Shen and C. Davatzikos. Very high resolution morphometry using mass-preserving deformations and hammer elastic registration. NeuroImage, 18(1):28–41, 2003.CrossRefGoogle Scholar
  75. 75.
    D. Shen and C. Davatzikos. Measuring temporal morphological changes robustly in brain mr images via 4-dimensional template warping. NeuroImage, 21(4):1508–1517, 2004.CrossRefGoogle Scholar
  76. 76.
    M. Styner and G. Gerig. Medial models incorporating object variability for 3d shape analysis. Lecture Notes in Computer Science, 2082:502–516, 2001.CrossRefGoogle Scholar
  77. 77.
    G. Szekely, A. Kelemen, C. Brechbuhler, and G. Gerig. Segmentation of 2-d and 3-d objects from mri volume data using constrained deformations of flexible fourier contour and surface models. Medical Image Analysis, 1:19–34, 1996.CrossRefGoogle Scholar
  78. 78.
    J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.CrossRefGoogle Scholar
  79. 79.
    J. Thirion. Non-rigid matching using deamons. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1996.Google Scholar
  80. 80.
    J. Thirion, O. Monga, S. Benayoun, A. Gueziec, and N. Ayache. Automatic registration of 3-d images using surface curvature. SPIE Proceedings, Mathematical Methods in Medical Imaging, 1768.:206–216, 1992.Google Scholar
  81. 81.
    P. Thompson, D. MacDonald, M. Mega, C. Holmes, A. Evans, and A. Toga. Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. Journal of Computer Assisted Tomography, 21(4):567–581, 1997.CrossRefGoogle Scholar
  82. 82.
    P. M. Thompson, M. Mega, R. Woods, C. Zoumalan, C. Lindshield, R. Blanton, J. Moussai, C. Holmes, J. Cummings, and A. Toga. Cortical change in alzheimer’s disease detected with a disease-specific population-based brain atlas. Cerebral Cortex, 11(1):1–16, 2001.CrossRefGoogle Scholar
  83. 83.
    S. Timoner, P. Golland, R. Kikinis, M. Shenton, W. Grimson, and W. M. Wells. Performance issues in shape classification. In MICCAI, pages 355–362, Tokyo, Japan, 2002. Springer-Verlag.Google Scholar
  84. 84.
    A. W. Toga, P. M. Thompson, M. S. Mega, K. L. Narr, and R. E. Blanton. Probabilistic approaches for atlasing normal and disease-specific brain variability. Anatomy and Embryology, 204(4):267–282, 2001.CrossRefGoogle Scholar
  85. 85.
    M. Vaillant and C. Davatzikos. Hierarchical matching of cortical features for deformable brain image registration. Lecture Notes in Computer Science: Information Processing in Medical Imaging, 1613:182–195, 1999.CrossRefGoogle Scholar
  86. 86.
    R. Verma and C. Davatzikos. Matching of diffusion tensor images using gabor features. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), pages 396–399, Arlington, Va., 2004.Google Scholar
  87. 87.
    R. Verma, P. Khurd, and C. Davatzikos. On analyzing diffusion tensor images by identifying manifold structure using isomaps. IEEE Transactions on Medical Imaging, 26(6):772–778, 2007.CrossRefGoogle Scholar
  88. 88.
    P. Viola. Alignment by maximization of mutual information, Ph.D. dissertation. Ph.d. dissertation, Massachusetts Inst. Technol., 1995.Google Scholar
  89. 89.
    Y. Wang, B. S. Peterson, and L. H. Staib. 3d brain surface matching based on geodesics and local geometry. Computer Vision and Image Understanding, 89(2-3):252–271, 2003.CrossRefGoogle Scholar
  90. 90.
    W. M. Wells, III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-modal volume registration by maximization of mutual information. Medical Image Analysis, 1(1):35–51, 1996.CrossRefGoogle Scholar
  91. 91.
    W. M. Wells, III, P. Viola, and R. Kikinis. Multi-modal volume registration by maximization of mutual information. In Medical Robotics and Computer Assisted Surgery, pages 55–62. New York: Wiley, 1995.Google Scholar
  92. 92.
    G. Wu, F. Qi, and D. Shen. Learning best features for deformable registration of mr brains. In MICCAI, volume 3349, pages 179–187, Palm Springs, CA, 2005.Google Scholar
  93. 93.
    D. Xu, S. Mori, D. Shen, P. C. M. van Zijl, and C. Davatzikos. Spatial normalization of diffusion tensor fields. Magnetic Resonance in Medicine, 50(1):175–182, 2003.CrossRefGoogle Scholar
  94. 94.
    Z. Xue, D. Shen, and C. Davatzikos. Correspondence detection using wavelet-based attribute vectors. In MICCAI, volume 3349, pages 762–770, Montreal, Canada, 2003. Springer-Verlag Heidelberg.Google Scholar
  95. 95.
    Z. Xue, D. Shen, and C. Davatzikos. Determining correspondence in 3d mr brain images using attribute vectors as morphological signatures of voxels. IEEE Transactions on Medical Imaging, 23(10):1276–1291, 2004.CrossRefGoogle Scholar
  96. 96.
    Z. Xue, D. Shen, B. Karacali, J. Stern, D. Rottenberg, and C. Davatzikos. Simulating deformations of mr brain images for validation of atlas-based segmentation and registration algorithms. NeuroImage, 33(3):855–866, 2006.CrossRefGoogle Scholar
  97. 97.
    J. Yang, D. Shen, C. Misra, X. Wu, S. Resnick, C. Davatzikos, and R. Verma. Spatial normalization of diffusion tensor images based on anisotropic segmentation. In SPIE, San Diego, CA, 2008.Google Scholar
  98. 98.
    Y. Zhan, D. Shen, J. Zeng, L. Sun, G. Fichtinger, J. Moul, and C. Davatzikos. Targeted prostate biopsy using statistical image analysis. IEEE Transactions on Medical Imaging, 26(6): 779–788, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of RadiologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations