Geometric Deformable Models

  • Y. BaiEmail author
  • X. Han
  • J. L. Prince


Geometric deformable models are deformable models that are implemented using the level set method. They have been extensively studied and widely used in a variety of applications in biomedical image analysis. In this chapter, the general geometric deformable model framework is first presented and then recent developments on topology, prior shape, intensity and motion, resolution, efficiency, robust optimization, and multiple objects are reviewed. Key equations and motivating and demonstrative examples are provided for many methods and guidelines for appropriate use are noted.


Deformable Model Active Contour Model Topology Control Signed Distance Function Geodesic Active Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    O. Alexandrov and F. Santosa. A topology-preserving level set method for shape optimization. J. Comput. Phys., 204(1):121–130, 2005.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel. Axioms and fundamental equations of image processing. Archive for Rational Mechanics and Analysis, 123:199–257, 1993.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    E. D. Angelini, T. Song, B. D. Mensh, and A. Laine. Multi-phase three-dimensional level set segmentation of brain MRI. In Medical Image Computing and Computer-Assisted Intervention, volume 3216, pages 318–326, 2004.Google Scholar
  4. 4.
    K. Appel and W. Haken. Every planar map is four colorable. Illinois Journal of Mathematics, 21:429–567, 1977.zbMATHMathSciNetGoogle Scholar
  5. 5.
    G. Aubert, M. Barlaud, O. Faugeras, and S. Jehan-Besson. Image segmentation using active contours: Calculus of variations or shape gradients? SIAM Journal of Applied Mathematics, 63:2128–2154, 2003.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    E. Bae, J. Yuan, and X. C. Tai. Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis., 92:112–129, 2011.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Y. Bai, X. Han, and J. L. Prince. Octree-based topology-preserving isosurface simplification. In Computer Vision and Pattern Recognition Workshop, page 81, New York, June 2006.Google Scholar
  8. 8.
    Y. Bai, X. Han, and J. L. Prince. Octree grid topology preserving geometric deformable models for 3D medical image segmentation. In Inf Process Med Imaging, volume 20, pages 556–568, 2007.Google Scholar
  9. 9.
    Y. Bai, X. Han, and J. L. Prince. Advances in Imaging and Electron Physics, volume 181, chapter Octree-grid Topology-preserving Geometric Deformable Model, pages 1–34. 2014.Google Scholar
  10. 10.
    L. Bertelli, B. Sumengen, B. S. Manjunath, and F. Gibou. A variational framework for multi-region pairwise similarity-based image segmentation. IEEE Trans. Pattern Anal. Machine Intell., pages 1400 – 1414, 2008.Google Scholar
  11. 11.
    J. Bogovic, P. -L. Bazin, S. Ying, and J. Prince. Automated segmentation of the cerebellar lobules using boundary specific classification and evolution. In Information Processing in Medical Imaging, pages 62–73, 2013.Google Scholar
  12. 12.
    J. Bogovic, J. Prince, and P. -L. Bazin. A multiple object geometric deformable model for image segmentation. Comput. Vis. Image Underst., 117:145–157, 2013.Google Scholar
  13. 13.
    X. Bresson, S. Esedoglu, P. Vandergheynst, J. -P. Thiran, and S. Osher. Fast global minimization of the active contour/snake model. J. Math. Imaging Vis., 28:151–167, 2007.CrossRefMathSciNetGoogle Scholar
  14. 14.
    T. Brox and J. Weickert. Level set segmentation with multiple regions. IEEE T. Image Process., 10:3213– 3218, 2006.CrossRefMathSciNetGoogle Scholar
  15. 15.
    W. Cao, W. Huang, and R. D. Russell. A moving mesh method based on the geometric conservation law. SIAM J. Sci. Comput., 24:118–142, 2002.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    V. Caselles, F. Catte, T. Coll, and F. Dibos. A geometric model for active contours in image processing. Numerische Mathematik, 66:1–31, 1993.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. Int. J. Comput. Vision, 22:61–79, 1997.CrossRefzbMATHGoogle Scholar
  18. 18.
    V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert. Minimal surfaces based object segmentation. IEEE Trans. Pattern Anal. Machine Intell., 19:394–398, 1997.CrossRefGoogle Scholar
  19. 19.
    T. Chan, S. Esedoglu, and M. Nikolova. Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math., 66:1632–1648, 2006.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    T. F. Chan and L. A. Vese. Active contours without edges. IEEE Trans. Image Proc., 10(2):266–277, 2001.CrossRefzbMATHGoogle Scholar
  21. 21.
    G. Charpiat, O. Faugeras, and R. Keriven. Approximations of shape metrics and application to shape warping and empirical shape statistics. Found. Comput. Math., 5:1–58, 2005.CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    G. Charpiat, R. Keriven, J. -P. Pons, and O. Faugeras. Designing spatially coherent minimizing flows for variational problems based on active contours. In IEEE International Conference on Computer Vision, volume 2, pages 1403–1408, 2005.Google Scholar
  23. 23.
    G. Charpiat, P. Maurel, J. -P. Pons, R. Keriven, and O. Faugeras. Generalized gradients: Priors on minimization flows. Int. J. Comput. Vision, 73(3):325 – 344, 2007.CrossRefGoogle Scholar
  24. 24.
    Y. Chen, H. D. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K.S. Gopinath, R.W. Briggs, and E.A. Geiser. Using prior shapes in geometric active contours in a variational framework. Int. J. Comput. Vision, 50:315–328, 2002.CrossRefzbMATHGoogle Scholar
  25. 25.
    Y. Chen, S. Thiruvenkadam, F. Huang, D. Wilson, E. A. G. Md, and H. D. Tagare. On the incorporation of shape priors into geometric active contours. In Variational and Level Set Methods in Computer Vision, pages 145–152, 2001.Google Scholar
  26. 26.
    L. Cohen, E. Bardinet, and N. Ayache. Surface reconstruction using active contour models. In SPIE on Geometric Methods in Computer Vision, 1993.Google Scholar
  27. 27.
    L. D. Cohen and I. Cohen. Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. Pattern Anal. Machine Intell., 15:1131–1147, 1993.CrossRefGoogle Scholar
  28. 28.
    L. D. Cohen and R. Kimmel. Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vision, 24:57–78, 1997.CrossRefGoogle Scholar
  29. 29.
    D. Cremers and G. Funka-Lea. Dynamical statistical shape priors for level set based sequence segmentation. In Variational, Geometric, and Level Set Methods in Computer Vision, volume 3752, pages 210–221, 2005.Google Scholar
  30. 30.
    D. Cremers, S. J. Osher, and S. Soatto. Kernel density estimation and intrinsic alignment for knowledge-driven segmentation: Teaching level sets to walk. In Pattern Recognition (Proc. DAGM), volume 3175, pages 36–44, 2004.Google Scholar
  31. 31.
    D. Cremers, S. J. Osher, and S. Soatto. Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vision, 69:335 – 351, 2006.CrossRefGoogle Scholar
  32. 32.
    D. Cremers, M. Rousson, and R. Deriche. A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. Int. J. Comput. Vision, 72: 195–215, 2007.CrossRefGoogle Scholar
  33. 33.
    D. Cremers, N. Sochen, and C. Schnörr. A multiphase dynamic labeling model for variational recognition-driven image segmentation. Int. J. Comput. Vision, 66:67–81, 2006.CrossRefzbMATHGoogle Scholar
  34. 34.
    M. Droske, B. Meyer, C. Schaller, and M. Rumpf. An adaptive level set method for medical image segmentation. In Information Processing in Medical Imaging, volume 2082, pages 416–422, 2001.Google Scholar
  35. 35.
    V. Estellers, D. Zosso, R. Lai, J. -P. Thiran, S. Osher, and X. Bresson. An efficient algorithm for level set method preserving distance function. IEEE T. Image Process., 21:4722–34, 2012.CrossRefMathSciNetGoogle Scholar
  36. 36.
    C. Feddern, J. Weickert, and B. Burgeth. Level-set methods for tensor-valued images. In Proc. 2nd IEEE Workshop Variational, Geometric and Level Set Methods in Computer Vision, pages 65–72, 2003.Google Scholar
  37. 37.
    C. Feddern, J. Weickert, B. Burgeth, and M. Welk. Curvature-driven PDE methods for matrix-valued images. Int. J. Comput. Vision, 69:93–107, 2006.CrossRefGoogle Scholar
  38. 38.
    R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky. Fast geodesic active contours. IEEE T. Image. Process., 10(10):1467 – 1475, 2001.CrossRefMathSciNetGoogle Scholar
  39. 39.
    T. Goldstein, X. Bresson, and S. Osher. Geometric applications of the split Bregman method: Segmentation and surface reconstruction. J. Sci. Comput., 45:272–293, 2010.CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    C. L. Guyader and L. Vese. Self-repelling snakes for topology-preserving segmentation models. Technical Report 07-20, UCLA, 2007.Google Scholar
  41. 41.
    X. Han, C. Xu, and J. L. Prince. A 2D moving grid geometric deformable model. In Computer Vision and Pattern Recognition, pages I:153–160, Madison, Wisconsin, June 2003.Google Scholar
  42. 42.
    X. Han, C. Xu, and J. L. Prince. A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Machine Intell., 25:755–768, 2003.CrossRefGoogle Scholar
  43. 43.
    M. Hernandez and A. F. Frangi. Non-parametric geodesic active regions: Method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA. Med. Image Anal., 11:224–241, 2007.CrossRefGoogle Scholar
  44. 44.
    S. Jehan-Besson, M. Barlaud, and G. Aubert. Dream2s: Deformable regions driven by an eulerian accurate minimization method for image and video segmentation. Int. J. Comput. Vision, 53:45–70, 2003.CrossRefGoogle Scholar
  45. 45.
    L. Jonassona, X. Bressona, P. Hagmanna, O. Cuisenairea, R. Meulib, and J. -P. Thiran. White matter fiber tract segmentation in DT-MRI using geometric flows. Med. Image Anal., 9: 223–236, 2005.CrossRefGoogle Scholar
  46. 46.
    L. Jonassona, P. Hagmanna, C. Polloa, X. Bressona, C. R. Wilsona, R. Meulib, and J. -P. Thiran. A level set method for segmentation of the thalamus and its nuclei in DT-MRI. Signal Process., 87:309–321, 2007.CrossRefGoogle Scholar
  47. 47.
    M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Intl. J. Comp. Vision, 1(4):321–331, 1988.CrossRefGoogle Scholar
  48. 48.
    A. Kenigsberg, R. Kimmel, and I. Yavneh. A multigrid approach for fast geodesic active contours. Technical report, Technion - I.I.T, Haifa 32000, Israel, 2004.Google Scholar
  49. 49.
    S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi. Gradient flows and geometric active contours. In International Conference on Computer Vision, pages 810–815, Boston, USA, 1995.Google Scholar
  50. 50.
    S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi. Conformal curvature flows: From phase transitions to active vision. Arch. Ration. Mech. Anal., 134:275–301, 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    J. Kim, J. W. Fisher, A. Yezzi, Mujdatetin, and A. S. Willsky. A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE T. Image. Process., 14:1486–1502, 2005.Google Scholar
  52. 52.
    B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker. Shapes, shocks, and deformations I: the components of two-dimensional shape and the reaction-diffusion space. Int. J. Comput. Vision, 15:189–224, 1995.CrossRefGoogle Scholar
  53. 53.
    P. Knupp and S. Steinberg. Fundamentals of Grid Generation. CRC Press, Boca Raton, FL, 1994.zbMATHGoogle Scholar
  54. 54.
    T. Kohlberger, D. Cremers, M. Rousson, R. Ramaraj, and G. Funka-Lea. 4D shape priors for a level set segmentation of the left myocardium in SPECT sequences. In Med Image Comput Comput Assist Interv., volume 9, pages 92–100, 2006.Google Scholar
  55. 55.
    T. Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. CVGIP: Image Understanding, 48:357–393, 1989.Google Scholar
  56. 56.
    K. Krissian and C. -F. Westin. Fast sub-voxel re-initialization of the distance map for level set methods. Pattern Recogn. Lett., 26:1532–1542, 2005.CrossRefGoogle Scholar
  57. 57.
    M. Leventon, E. Grimson, and O. Faugeras. Statistical shape influence in geodesic active contours. In Computer Vision and Pattern Recognition, volume 1, pages 316–322, 2000.Google Scholar
  58. 58.
    C. Li, C. Xu, C. Cui, and M. Fox. Distance regularized level set evolution and its application to image segmentation. IEEE T. Image Process., 19:3243–3254, 2010.CrossRefGoogle Scholar
  59. 59.
    C. Li, C. Xu, C. Gui, and M. Fox. Level set evolution without re-initialization: a new variational formulation. In Computer Vision and Pattern Recognition, volume 1, pages 430–436, 2005.Google Scholar
  60. 60.
    F. Li, C. Shen, and C. Li. Multiphase soft segmentation with total variation and H 1 regularization. J. Math. Imaging Vis., 37:98–111, 2010.CrossRefMathSciNetGoogle Scholar
  61. 61.
    H. Li and A. J. Yezzi. Local or global minima: Flexible dual-front active contours. IEEE Trans. Pattern Anal. Machine Intell., 29(1):1–14, 2007.CrossRefGoogle Scholar
  62. 62.
    S. Li, T. Fevens, A. Krzyzak, C. Jin, and S. Li. Fast and robust clinical triple-region image segmentation using one level set function. In Med Image Comput Comput Assist Interv., volume 9, pages 766–773, 2006.Google Scholar
  63. 63.
    G. Liao, F. Liu, G. de la Pena, D. Peng, and S. Osher. Level-set-based deformation methods for adaptive grids. J. Comput. Phys., 159:103–122, 2000.CrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    A. Litvin and W. C. Karl. Coupled shape distribution-based segmentation of multiple objects. In Information Processing in Medical Imaging, volume 3565, pages 345–356, 2005.Google Scholar
  65. 65.
    W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3D surface construction algorithm. In ACM SIGGRAPH Computer Graphics, volume 21, pages 163–169, 1987.Google Scholar
  66. 66.
    L. M. Lorigo, O. Faugeras, and W. Grimson. Co-dimension 2 geodesic active contours for MRA segmentation. In Information Processing in Medical Imaging, volume 1613, pages 126–139, 1999.Google Scholar
  67. 67.
    L. M. Lorigo, O. D. Faugeras, W. E. L. Grimson, R. Keriven, R. Kikinis, A. Nabavi, and C. -F. Westin. Curves: Curve evolution for vessel segmentation. Med. Image Anal., 5: 195–206, 2001.CrossRefGoogle Scholar
  68. 68.
    R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. Machine Intell., 17:158–175, 1995.CrossRefGoogle Scholar
  69. 69.
    A. -R. Mansouri, A. Mitiche, and C. Vázquez. Multiregion competition: a level set extension of region competition to multiple region image partitioning. Comput. Vis. Image Underst., 101:137–150, 2006.CrossRefGoogle Scholar
  70. 70.
    T. McInerney and D. Terzopoulos. A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Comput. Med. Imag. Grap., 19:69–83, 1995.CrossRefGoogle Scholar
  71. 71.
    T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: A survey. Med. Image Anal., 1:91–108, 1996.CrossRefGoogle Scholar
  72. 72.
    J. Melonakos, E. Pichon, S. Angenent, and A. Tannenbaum. Finsler active contours. IEEE Trans. Pattern Anal. Machine Intell., 30:412–423, 2008.CrossRefGoogle Scholar
  73. 73.
    D. Metaxas. Physics-Based Deformable Models: Applications to Computer Vision, Graphics and Medical Imaging. Kluwer Academic Publishers, 1996.Google Scholar
  74. 74.
    R. B. Milne. Adaptive Level Sets Methods Interfaces. PhD thesis, Dept. Math., UC Berkely, 1995.Google Scholar
  75. 75.
    J. Montagnat, H. Delingette, and N. Ayache. A review of deformable surfaces: Topology, geometry and deformation. Image Vision Comput., 19:1023–1040, 2001.CrossRefGoogle Scholar
  76. 76.
    S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79:12–49, 1988.CrossRefzbMATHMathSciNetGoogle Scholar
  77. 77.
    G. Papandreou and P. Maragos. Multigrid geometric active contour models. IEEE T. Image. Process., 16:229–240, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  78. 78.
    N. Paragios and R. Deriche. Unifying boundary and region-based information for geodesic active tracking. In Computer Vision and Pattern Recognition, volume 2, pages 300–305, 1999.Google Scholar
  79. 79.
    N. Paragios and R. Deriche. Coupled geodesic active regions for image segmentation: A level set approach. In European Conference in Computer Vision, volume 1843, pages 224–240, 2000.Google Scholar
  80. 80.
    N. Paragios and R. Deriche. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Machine Intell., 22(3):1–15, 2000.CrossRefGoogle Scholar
  81. 81.
    E. Parzen. On the estimation of a probability density function and the mode. Annals of Mathematical Statistics, 33:1065C1076, 1962.Google Scholar
  82. 82.
    D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A PDE-based fast local level set method. J. Comput. Phys., 155:410–438, 1999.CrossRefzbMATHMathSciNetGoogle Scholar
  83. 83.
    M. Rochery, I. H. J. C. Information, and J. Zerubia. Higher order active contours. Int. J. Comput. Vision, 69:27–42, 2006.CrossRefGoogle Scholar
  84. 84.
    R. Ronfard. Region-based strategies for active contour models. Int. J. Comput. Vision, 13: 229–251, 1994.CrossRefGoogle Scholar
  85. 85.
    M. Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27:832–837, 1956.CrossRefzbMATHMathSciNetGoogle Scholar
  86. 86.
    M. Rousson and D. Cremers. Efficient kernel density estimation of shape and intensity priors for level set segmentation. In Med Image Comput Comput Assist Interv., volume 8, pages 757–764, 2005.Google Scholar
  87. 87.
    M. Rousson and N. Paragios. Shape priors for level set representations. In European Conference on Computer Vision, volume 2351, pages 78–92, 2002.Google Scholar
  88. 88.
    M. Rousson, N. Paragios, and R. Deriche. Implicit active shape models for 3D segmentation in MR imaging. In Medical Image Computing and Computer-Assisted Intervention, volume 3216, pages 209–216, 2004.Google Scholar
  89. 89.
    C. Samson, L. Blanc-Féraud, G. Aubert, and J. Zerubia. A level set model for image classification. Int. J. Comput. Vision, 40:187–197, 2000.CrossRefzbMATHGoogle Scholar
  90. 90.
    G. Sapiro and A. Tannenbaum. Affine invariant scale-space. Int. J. Comput. Vision, 11:25–44, 1993.CrossRefGoogle Scholar
  91. 91.
    T. B. Sebastian, H. Tek, J. J. Crisco, S. W. Wolfe, and B. B. Kimia. Segmentation of carpal bones from 3D CT images using skeletally coupled deformable models. Med. Image Anal., 7:21–45, 2003.CrossRefGoogle Scholar
  92. 92.
    F. Ségonne. Active contours under topology control genus preserving level sets. Int. J. Comput. Vision, 79:107–117, 2008.CrossRefGoogle Scholar
  93. 93.
    F. Ségonne, J. -P. Pons, E. Grimson, and B. Fischl. Active contours under topology control genus preserving level sets. In Computer Vision for Biomedical Image Applications, volume 3765, pages 135–145, 2005.Google Scholar
  94. 94.
    J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci., 93:1591–1595, 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  95. 95.
    J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge, UK, 2nd edition, 1999.zbMATHGoogle Scholar
  96. 96.
    Y. Shi and W. Karl. A fast level set method without solving PDEs. In IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 97–100, 2005.Google Scholar
  97. 97.
    Y. Shi and W. C. Karl. Differentiable minimin shape distance for incorporating topological priors in biomedical imaging. In IEEE International Symposium on Biomedical Imaging: Nano to Macro, volume 2, pages 1247–1250, 2004.Google Scholar
  98. 98.
    K. Siddiqi, Y. B. Lauziere, A. Tannenbaum, and S. W. Zucker. Area and length minimizing flow for shape segmentation. IEEE T. Image. Process., 7:433–443, 1998.CrossRefGoogle Scholar
  99. 99.
    L. H. Staib and J. S. Duncan. Boundary finding with parametrically deformable models. IEEE Trans. Pattern Anal. Machine Intell., 15:1061–1075, 1992.CrossRefGoogle Scholar
  100. 100.
    B. Sumengen and B. Manjunath. Graph partitioning active contours (GPAC) for image segmentation. IEEE Trans. Pattern Anal. Machine Intell., 28:509– 521, 2006.CrossRefGoogle Scholar
  101. 101.
    G. Sundaramoorthi, A. Yezzi, and A. Mennucci. Sobolev active contours. In Variational, Geometric, and Level Set Methods in Computer Vision, volume 3752, pages 109–120, 2005.Google Scholar
  102. 102.
    G. Sundaramoorthi, A. Yezzi, and A. Mennucci. Sobolev active contours. Int. J. Comput. Vision, 73(3):345–366, 2006.CrossRefGoogle Scholar
  103. 103.
    G. Sundaramoorthi and A. J. Yezzi. Global regularizing flow with topology preservation for active contours and polygons. IEEE T. Image. Process., 16(3):803–812, 2007.CrossRefMathSciNetGoogle Scholar
  104. 104.
    M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. An adaptive level set approach for incompressible two-phase flow. J. Comput. Phys., 148: 81–124, 1999.CrossRefzbMATHMathSciNetGoogle Scholar
  105. 105.
    L. Tan and N. Zabaras. Modeling the growth and interaction of multiple dendrites in solidification using a level set method. J. Comput. Phys., 226:131–155, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  106. 106.
    A. Tsai, W. Wells, C. Tempany, E. Grimson, and A. Willsky. Mutual information in coupled multi-shape model for medical image segmentation. Med. Image Anal., 4:429–445, 2004.CrossRefGoogle Scholar
  107. 107.
    A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, W. Grimson, and A. Willsky. A shape-based approach to the segmentation of medical imagery using level sets. IEEE T. Med. Imaging., 22:137–154, 2003.CrossRefGoogle Scholar
  108. 108.
    A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, E. Grimson, and A.Willsky. Model-based curve evolution technique for image segmentation. In Computer Vision and Pattern Recognition, volume 1, pages 463–468, 2001.Google Scholar
  109. 109.
    J. N. Tsitsiklis. Efficient algorithm for globally optimal trajectories. IEEE T. Automat. Contr., 40(9):1528–1538, 1995.CrossRefzbMATHMathSciNetGoogle Scholar
  110. 110.
    A. Vasilevskiy and K. Siddiqi. Flux maximizing geometric flows. IEEE Trans. Pattern Anal. Machine Intell., 24:1565– 1578, 2002.CrossRefGoogle Scholar
  111. 111.
    L. A. Vese and T. F. Chan. A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vision, 50:271–293, 2002.CrossRefzbMATHGoogle Scholar
  112. 112.
    Z. Wang and B. C. Vemuri. Tensor field segmentation using region based active contour model. In European Conference on Computer Vision, volume 3024, pages 304–315, 2004.Google Scholar
  113. 113.
    J. Weickert and G. Kuhne. Fast methods for implicit active contour models. In S. Osher and N. Paragios, editors, Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, 2003.Google Scholar
  114. 114.
    J. Weickert, B. Romeny, and M. Viergever. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE T. Image. Process., 7:398–410, 1998.CrossRefGoogle Scholar
  115. 115.
    Y. Xiang, A. C. Chung, and J. Ye. A new active contour method based on elastic interaction. In Computer Vision and Pattern Recognition, volume 1, pages 452–457, 2005.Google Scholar
  116. 116.
    X. Xie and M. Mirmehdi. RAGS: Region-aided geometric snake. IEEE T. Image Process., 13:640–652, 2004.CrossRefMathSciNetGoogle Scholar
  117. 117.
    X. Xie and M. Mirmehdi. Magnetostatic field for the active contour model: A study in convergence. In British Machine Vision Conference, pages 127–136, 2006.Google Scholar
  118. 118.
    X. Xie and M. Mirmehdi. MAC: Magnetostatic active contour model. IEEE Trans. Pattern Anal. Machine Intell., 30:632–646, 2008.CrossRefGoogle Scholar
  119. 119.
    C. Xu, D. L. Pham, and J. L. Prince. Handbook of Medical Imaging – Volume 2: Medical Image Processing and Analysis, chapter Image Segmentation Using Deformable Models, pages 129–174. SPIE Press, 2000.Google Scholar
  120. 120.
    C. Xu and J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Trans. Imag. Proc., 7(3):359–369, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  121. 121.
    C. Xu, A. Yezzi, and J. L. Prince. A summary of geometric level-set analogues for a general class of parametric active contour and surface models. In Variational and Level Set Methods in Computer Vision, pages 104–111, 2001.Google Scholar
  122. 122.
    M. Xu, P. M. Thompson, and A. W. Toga. An adaptive level set segmentation on a triangulated mesh. IEEE T. Med. Imaging., 23(2):191–201, 2004.CrossRefGoogle Scholar
  123. 123.
    P. Yan and A. A. Kassim. Segmentation of volumetric MRA images by using capillary active contour. Med. Image Anal., 10:317–329, 2006.CrossRefGoogle Scholar
  124. 124.
    J. Yang and J. S. Duncan. 3D image segmentation of deformable objects with shape-appearance joint prior models. In Medical Image Computing and Computer-Assisted Intervention, volume 2878, pages 573–580, 2003.Google Scholar
  125. 125.
    J. Yang, L. H. Staib, and J. S. Duncan. Neighbor-constrained segmentation with 3D deformable models. IEEE T. Med. Imaging., 23:940–948, 2004.CrossRefGoogle Scholar
  126. 126.
    S. Yeo, X. Xie, I. Sazonov, and P. Nithiarasu. Geometrically induced force interaction for three dimensional deformable models. IEEE T. Image Process., 20:1373–1387, 2011.CrossRefMathSciNetGoogle Scholar
  127. 127.
    A. Yezzi, S. Kichenssamy, A. Kumar, P. Olver, and A. Tannebaum. A geometric snake model for segmentation of medical imagery. IEEE T. Med. Imaging., 16:199–209, 1997.CrossRefGoogle Scholar
  128. 128.
    A. Yezzi, A. Tsai, and A. Willsky. A statistical approach to snakes for bimodal and trimodal imagery. In International Conference on Computer Vision, volume 2, pages 898–903, Corfu, Greece, 1999.Google Scholar
  129. 129.
    A. Yezzi, A. Tsai, and A. Willsky. Medical image segmentation via coupled curve evolution equations with global constraints. In Mathematical Methods in Biomedical Image Analysis, pages 12–19, 2000.Google Scholar
  130. 130.
    H. Zhao. Fast sweeping method for Eikonal equations. Math. Computation, 74:603–627, 2004.CrossRefGoogle Scholar
  131. 131.
    H. K. Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach to multiphase motion. J. Comput. Phys., 127:179–195, 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  132. 132.
    S. C. Zhu and A. Yuille. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Machine Intell., 18:884–900, 1996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.HeartFlow, Inc.Redwood CityUSA
  2. 2.Elekta Inc.St. LouisUSA
  3. 3.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations