Advertisement

From Local Q-Ball Estimation to Fibre Crossing Tractography

  • M. DescoteauxEmail author
  • R. Deriche

Abstract

Fibre crossing is an important problem for most existing diffusion tensor imaging (DTI) based tractography algorithms. To overcome limitations of DTI, high angular resolution diffusion imaging (HARDI) techniques such as q-ball imaging (QBI) have been introduced. The purpose of this chapter is to first give state of the art review of the existing local HARDI reconstruction techniques as well as the existing HARDI-based tractography algorithms. Then, we describe our analytical QBI solution to reconstruct the diffusion orientation distribution function (ODF) of water molecules and we propose a spherical deconvolution method to transform the diffusion ODF into a sharper fibre ODF. Finally, we propose a new deterministic and a new probabilistic algorithm based on this fibre ODF. We show that the diffusion ODF and fibre ODF can recover fibre crossing in simulated data, in a biological phantom and in real datasets. The fibre ODF improves angular resolution of QBI by more than 15 and greatly improves tractography results in regions of complex fibre crossing, fanning and branching.

Keywords

Apparent Diffusion Coefficient Diffusion Tensor Imaging Fibre Bundle Orientation Distribution Function Fibre Tractography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. L. Alexander, K. M. Hasan, M. Lazar, J. S. Tsuruda, and D. L. Parker. Analysis of partial volume effects in diffusion-tensor mri. Magnetic Resonance in Medicine, 45(4):770–780, 2001.CrossRefGoogle Scholar
  2. 2.
    D. Alexander. An Introduction to Diffusion MRI: the Diffusion Tensor and Beyond. Springer, 2006.Google Scholar
  3. 3.
    D. Alexander, G. Barker, and S. Arridge. Detection and modeling of non-gaussian apparent diffusion coefficient profiles in human brain data. Magnetic Resonance in Medicine, 48(2):331–340, 2002.CrossRefGoogle Scholar
  4. 4.
    D. C. Alexander. Maximum entropy spherical deconvolution for diffusion mri. In Image Processing in Medical Imaging, pages 76–87, 2005.Google Scholar
  5. 5.
    A. Anderson. Measurements of fiber orientation distributions using high angular resolution diffusion imaging. Magnetic Resonance in Medicine, 54:1194–1206, 2005.CrossRefGoogle Scholar
  6. 6.
    A. Anwander, M. Tittgemeyer, D. Y. von Cramon, A. D. Friederici, and T. R. Knosche. Connectivity-based parcellation of broca’s area. Cerebral Cortex, 17(4):816–825, 2007.CrossRefGoogle Scholar
  7. 7.
    Y. Assaf and P. Basser. Composite hindered and restricted model of diffusion (charmed) mr imaging of the human brain. NeuroImage, 27(1):48–58, 2005.CrossRefGoogle Scholar
  8. 8.
    P. Basser, J. Mattiello, and D. LeBihan. MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1):259–267, 1994.CrossRefGoogle Scholar
  9. 9.
    P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi. In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44:625–632, 2000.CrossRefGoogle Scholar
  10. 10.
    T. E. J. Behrens, H. Johansen-Berg, S. Jbabdi, M. F. S. Rushworth, and M. W. Woolrich. Probabilistic diffusion tractography with multiple fibre orientations. what can we gain? NeuroImage, 34(1):144–155, 2007.Google Scholar
  11. 11.
    T. E. J. Behrens, M. W. Woolrich, M. Jenkinson, H. Johansen-Berg, R. G. Nunes, S. Clare, P. M. Matthews, J. M. Brady, and S. M. Smith. Characterization and propagation of uncertainty in diffusion-weighted mr imaging. Magnetic Resonance in Medicine, 50:1077–1088, 2003.CrossRefGoogle Scholar
  12. 12.
    Ø. Bergmann, G. Kindlmann, S. Peled, and C.-F. Westin. Two-tensor fiber tractography. In 4th International Symposium on Biomedical Imaging, pages 796–799, Arlington, Virginia, USA, 2007.Google Scholar
  13. 13.
    R. Blyth, P. Cook, and D. Alexander. Tractography with multiple fibre directions. In Proceedings of the International Society of Magnetic Resonance in Medicine, page 240, Toronto, Canada, 2003. International Society for Magnetic Resonance in Medicine.Google Scholar
  14. 14.
    J. S. W. Campbell, P. Savadjiev, K. Siddiqi, and B. G. Pike. Validation and regularization in diffusion mri tractography. In Third IEEE International Symposium on Biomedical Imaging (ISBI): from Nano to Macro, pages 351–354, Arlington, Virginia, USA, 2006.Google Scholar
  15. 15.
    J. S. W. Campbell, K. Siddiqi, V. V. Rymar, A. Sadikot, and G. B. Pike. Flow-based fiber tracking with diffusion tensor q-ball data: Validation and comparison to principal diffusion direction techniques. NeuroImage, 27(4):725–736, Oct. 2005.CrossRefGoogle Scholar
  16. 16.
    Y.-P. Chao, C.-Y. Yang, K.-H. Cho, C.-H. Yeh, K.-H. Chou, J.-H. Chen, and C.-P. Lin. Probabilistic anatomical connection derived from qbi with mfact approach. In International Conference on Functional Biomedical Imaging, Hangzhou, China, October 2007.Google Scholar
  17. 17.
    Y.-P. Chao, C.-H. Yeh, K.-H. Cho, J.-H. Chen, and C.-P. Lin. Multiple streamline tractography approach with high angular resolution diffusion imaging data. In Proceedings of the International Society of Magnetic Resonance in Medicine, page 1550, Berlin, Germany, June 2007.Google Scholar
  18. 18.
    Y. Chen, W. Guo, Q. Zeng, G. He, B. Vemuri, and Y. Liu. Recovery of intra-voxel structure from hard dwi. In ISBI, pages 1028–1031. IEEE, 2004.Google Scholar
  19. 19.
    T. Conturo, N. Lori, T. Cull, E. Akbudak, A. Snyder, J. Shimony, R. McKinstry, H. Burton, and M. Raichle. Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences, 96:10422–10427, Aug. 1999.CrossRefGoogle Scholar
  20. 20.
    F. Dell’Acqua, G. Rizzo, P. Scifo, R. Clarke, G. Scotti, and F. Fazio. A model-based deconvolution approach to solve fiber crossing in diffusion-weighted mr imaging. Transactions in Biomedical Engineering, 54(3):462–472, 2007.CrossRefGoogle Scholar
  21. 21.
    R. Deriche and M. Descoteaux. Splitting tracking through crossing fibers: Multidirectional q-ball tracking. In 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’07), pages 756–759, Arlington, Virginia, USA, April 2007.Google Scholar
  22. 22.
    M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche. Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications. Magnetic Resonance in Medicine, 56:395–410, 2006.CrossRefGoogle Scholar
  23. 23.
    M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche. Regularized, fast, and robust analytical q-ball imaging. Magnetic Resonance in Medicine, 58(3):497–510, 2007.CrossRefGoogle Scholar
  24. 24.
    M. Descoteaux and R. Deriche. Segmentation of q-ball images using statistical surface evolution. In Springer, editor, Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume LNCS 4792, pages 769–776, Brisbane, Australia, 2007.Google Scholar
  25. 25.
    M. Descoteaux, R. Deriche, and A. Anwander. Deterministic and probabilistic q-ball tractography: from diffusion to sharp fiber distributions. Technical Report 6273, INRIA Sophia Antipolis, July 2007.Google Scholar
  26. 26.
    L. Frank. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magnetic Resonance in Medicine, 47(6):1083–1099, 2002.CrossRefGoogle Scholar
  27. 27.
    O. Friman, G. Farneback, and C.-F. Westin. A bayesian approach for stochastic white matter tractography. IEEE Transactions in Medical Imaging, 25(8), 2006.Google Scholar
  28. 28.
    W. Guo, Q. Zeng, Y. Chen, and Y. Liu. Using multiple tensor deflection to reconstruct white matter fiber traces with branching. In Third IEEE International Symposium on Biomedical Imaging: from Nano to Macro, pages 69–72, Arlington, Virginia, USA, Apr. 2006.Google Scholar
  29. 29.
    P. Hagmann, L. Jonasson, P. Maeder, J.-P. Thiran, V. J. Wedeen, and R. Meuli. Understanding diffusion mr imaging techniques: From scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. RadioGraphics, 26:S205–S223, 2006.CrossRefGoogle Scholar
  30. 30.
    P. Hagmann, T. G. Reese, W.-Y. I. Tseng, R. Meuli, J.-P. Thiran, and V. J. Wedeen. Diffusion spectrum imaging tractography in complex cerebral white matter: an investigation of the centrum semiovale. In Proceedings of the International Society of Magnetic Resonance in Medicine, page 623. International Society for Magnetic Resonance in Medicine, 2004.Google Scholar
  31. 31.
    H. A. Haroon and G. J. Parker. Using the wild bootstrap to quantify uncertainty in fibre orientations from q-ball analysis. In Proceedings of the International Society of Magnetic Resonance in Medicine, page 903, Berlin, Germany, 19-25th May 2007.Google Scholar
  32. 32.
    C. Hess, P. Mukherjee, E. Han, D. Xu, and D. Vigneron. Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magnetic Resonance in Medicine, 56:104–117, 2006.CrossRefGoogle Scholar
  33. 33.
    T. Hosey, G. Williams, and R. Ansorge. Inference of multiple fiber orientation in high angular resolution diffusion imaging. Magnetic Resonance in Medicine, 54:1480–1489, 2005.CrossRefGoogle Scholar
  34. 34.
    K. M. Jansons and D. C. Alexander. Persistent angular structure: new insights fom diffusion magnetic resonance imaging data. Inverse Problems, 19:1031–1046, 2003.CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    S. Jbabdi, P. Bellec, R. Toro, J. Daunizeau, M. Pelegrini-Issac, and H. Benali. Accurate anisotropic fast marching for diffusion-based geodesic tractography. International Journal of Biomedical Imaging, in press, 2007.Google Scholar
  36. 36.
    S. Jbabdi, M. Woolrich, J. Andersson, and T. Behrens. A bayesian framework for global tractography. NeuroImage, 37:116–129, 2007.CrossRefGoogle Scholar
  37. 37.
    B. Jian and B. C. Vemuri. A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted mri. IEEE Transactions on Medical Imaging, 26(11):1464–1471, 2007.CrossRefGoogle Scholar
  38. 38.
    B. Jian, B. C. Vemuri, E. Ozarslan, P. R. Carney, and T. H. Mareci. A novel tensor distribution model for the diffusion-weighted mr signal. NeuroImage, 37:164–176, 2007.CrossRefGoogle Scholar
  39. 39.
    D. K. Jones and C. Pierpaoli. Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach. Magnetic Resonance in Medicine, 53: 1143–1149, 2005.CrossRefGoogle Scholar
  40. 40.
    E. Kaden, T. R. Knosche, and A. Anwander. Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion mr imaging. NeuroImage, 37:474–488, 2007.CrossRefGoogle Scholar
  41. 41.
    M. H. Khachaturian, J. J. Wisco, and D. S. Tuch. Boosting the sampling efficiency of q-ball imaging using multiple wavevector fusion. Magnetic Resonance in Medicine, 57:289–296, 2007.CrossRefGoogle Scholar
  42. 42.
    M. Koch, D. Norris, and M. Hund-Georgiadis. An investigation of functional and anatomical connectivity using magnetic resonance imaging. NeuroImage, 16:241–250, 2002.CrossRefGoogle Scholar
  43. 43.
    B. W. Kreher, J. F. Schneider, J. Mader, E. Martin, H. J, and K. Il’yasov. Multitensor approach for analysis and tracking of complex fiber configurations. Magnetic Resonance in Medicine, 54:1216–1225, 2005.Google Scholar
  44. 44.
    M. Lazar and A. L. Alexander. Bootstrap white matter tractography (boot-tract). NeuroImage, 24:524–532, 2005.CrossRefGoogle Scholar
  45. 45.
    C. Lenglet. Geometric and Variational Methods for Diffusion Tensor MRI Processing. PhD thesis, Universite de Nice-Sophia Antipolis, 2006.Google Scholar
  46. 46.
    C. Lin, V. Wedeen, J. Chen, C. Yao, and W. I. Tseng. Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. NeuroImage, 19:482–495, 2003.CrossRefGoogle Scholar
  47. 47.
    C. Liu, R. Bammer, B. Acar, and M. E. Moseley. Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magnetic Resonance in Medicine, 51:924–937, 2004.CrossRefGoogle Scholar
  48. 48.
    S. E. Maier, S. Vajapeyam, H. Mamata, C.-F. Westin, F. A. Jolesz, and R. V. Mulkern. Biexponential diffusion tensor analysis of human brain diffusion data. Magnetic Resonance in Medicine, 51:321–330, 2004.CrossRefGoogle Scholar
  49. 49.
    T. McGraw, B. Vemuri, B. Yezierski, and T. Mareci. Von mises-fisher mixture model of the diffusion odf. In 3rd IEEE International Symposium on Biomedical Imaging (ISBI): Macro to Nano, 2006.Google Scholar
  50. 50.
    S. Mori and P. C. M. van Zijl. Fiber tracking: principles and strategies - a technical review. NMR in Biomedicine, 15:468–480, 2002.CrossRefGoogle Scholar
  51. 51.
    E. Ozarslan and T. Mareci. Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution imaging. Magnetic Resonance in Medicine, 50:955–965, 2003.CrossRefGoogle Scholar
  52. 52.
    E. Ozarslan, T. Shepherd, B. Vemuri, S. Blackband, and T. Mareci. Resolution of complex tissue microarchitecture using the diffusion orientation transform (dot). NeuroImage, 31(3):1086–1103, 2006.CrossRefGoogle Scholar
  53. 53.
    G. J. M. Parker and D. C. Alexander. Probabilistic monte carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. In IPMI, pages 684–695, 2003.Google Scholar
  54. 54.
    G. J. M. Parker and D. C. Alexander. Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philosophical Transactions of the Royal Society, Series B, 360:893–902, 2005.Google Scholar
  55. 55.
    S. Peleda, O. Friman, F. Jolesz, and C.-F. Westin. Geometrically constrained two-tensor model for crossing tracts in dwi. Magnetic Resonance Imaging, 24:1263–1270, 2006.CrossRefGoogle Scholar
  56. 56.
    M. Perrin, C. Poupon, Y. Cointepas, B. Rieul, N. Golestani, C. Pallier, D. Riviere, A. Constantinesco, D. L. Bihan, and J.-F. Mangin. Fiber tracking in q-ball fields using regularized particle trajectories. In Information Processing in Medical Imaging, pages 52–63, 2005.Google Scholar
  57. 57.
    A. Ramirez-Manzanares, M. Rivera, B. Vemuri, P. Carney, and T. Mareci. Diffusion basis functions decomposition for estimating white matter intra-voxel fiber geometry. IEEE Transactions on Medical Imaging, page in press, 2007.Google Scholar
  58. 58.
    K. E. Sakaie and M. J. Lowe. An objective method for regularization of fiber orientation distributions derived from diffusion-weighted mri. NeuroImage, 34:169–176, 2007.CrossRefGoogle Scholar
  59. 59.
    P. Savadjiev, J. S. W. Campbell, M. Descoteaux, R. Deriche, G. B. Pike, and K. Siddiqi. Disambiguation of complex subvoxel fibre configurations in high angular resolution fibre tractography. In Joint Annual Meeting ISMRM-ESMRMB, page 1477, Berlin, Germany, 19-25th May 2007. International Society of Magnetic Resonance in Medicine.Google Scholar
  60. 60.
    P. Savadjiev, J. S. W. Campbell, B. G. Pike, and K. Siddiqi. 3d curve inference for diffusion mri regularization and fibre tractography. Medical Image Analysis, 10:799–813, 2006.CrossRefGoogle Scholar
  61. 61.
    K. K. Seunarine and D. C. Alexander. Linear persistent angular structure mri and non-linear spherical deconvolution for diffusion mri. In International Society for Magnetic Resonance in Medicine, page 2726, 2006.Google Scholar
  62. 62.
    K. K. Seunarine, P. A. Cook, M. G. Hall, K. V. Embleton, G. J. M. Parker, and D. C. Alexander. Exploiting peak anisotropy for tracking through complex structures. In Mathematical Methods in Biomedical Image Analysis (MMBIA 2007), 2007.Google Scholar
  63. 63.
    J.-D. Tournier, F. Calamante, and A. Connelly. Robust determination of the fibre orientation distribution in diffusion mri: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage, 35(4):1459–1472, 2007.CrossRefGoogle Scholar
  64. 64.
    J.-D. Tournier, F. Calamante, D. Gadian, and A. Connelly. Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution. NeuroImage, 23:1176–1185, 2004.CrossRefGoogle Scholar
  65. 65.
    D. Tuch. Diffusion MRI of Complex Tissue Structure. PhD thesis, Harvard University and Massachusetts Institute of Technology, 2002.Google Scholar
  66. 66.
    D. Tuch. Q-ball imaging. Magnetic Resonance in Medicine, 52(6):1358–1372, 2004.CrossRefGoogle Scholar
  67. 67.
    D. Tuch, T. Reese, M. Wiegell, N. Makris, J. Belliveau, and V. Wedeen. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine, 48(4):577–582, 2002.CrossRefGoogle Scholar
  68. 68.
    D. Wassermann, M. Descoteaux, and R. Deriche. Recovering cerebral white matter structures with spectral clustering of diffusion mri data. Technical Report 6351, INRIA Sophia Antipolis- Méditerranée, November 2007.Google Scholar
  69. 69.
    V. Wedeen, T. Reese, D. Tuch, M. Wiegel, J.-G. Dou, R. Weiskoff, and D. Chessler. Mapping fiber orientation spectra in cerebral white matter with fourier-transform diffusion mri. In Proceedings of the International Society of Magnetic Resonance in Medicine, page 82. International Society for Magnetic Resonance in Medicine, 2000.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of computer Science2500 Blv. UniversitéSherbrookeCanada
  2. 2.Athena Project TeamINRIA Sophia Antipolis-MéditerranéeSophia Antipolis CedexFrance

Personalised recommendations