Advertisement

Diffusion Tensor Estimation, Regularization and Classification

  • R. Neji
  • N. AzzabouEmail author
  • G. Fleury
  • N. Paragios

Abstract

In this chapter, we explore diffusion tensor estimation, regularization and classification. To this end, we introduce a variational method for joint estimation and regularization of diffusion tensor fields from noisy raw data as well as a Support Vector Machine (SVM) based classification framework.

In order to simultaneously estimate and regularize diffusion tensor fields from noisy observations, we integrate the classic quadratic data fidelity term derived from the Stejskal-Tanner equation with a new smoothness term leading to a convex objective function. The regularization term is based on the assumption that the signal can be reconstructed using a weighted average of observations on a local neighborhood. The weights measure the similarity between tensors and are computed directly from the diffusion images. We preserve the positive semi-definiteness constraint using a projected gradient descent.

The classification framework we consider in this chapter allows linear as well as non linear separation of diffusion tensors using kernels defined on the space of symmetric positive definite matrices. The kernels are derived from their counterparts on the statistical manifold of multivariate Gaussian distributions with zero mean or from distance substitution in the Gaussian Radial Basis Function (RBF) kernel. Experimental results on diffusion tensor images of the human skeletal muscle (calf) show the potential of our algorithms both in denoising and SVM-driven Markov random field segmentation.

Keywords

Support Vector Machine Diffusion Tensor Imaging Diffusion Tensor Extensor Digitorum Longus Human Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Azzabou, N. Paragios, F. Guichard, and F. Cao. Variable bandwidth image denoising using image-based noise models. In CVPR, 2007.Google Scholar
  2. 2.
    S. Basu, P. T. Fletcher, and R. T. Whitaker. Rician noise removal in diffusion tensor mri. In MICCAI (1), pages 117–125, 2006.Google Scholar
  3. 3.
    D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.zbMATHGoogle Scholar
  4. 4.
    D. L. Bihan, J.-F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat. Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13:534–546, 2001.CrossRefGoogle Scholar
  5. 5.
    S. Boughorbel, J.-P. Tarel, and F. Fleuret. Non-Mercer kernels for SVM object recognition. In BMVC, 2004.Google Scholar
  6. 6.
    C. A. Castano-Moraga, C. Lenglet, R. Deriche, and J. Ruiz-Alzola. A Riemannian approach to anisotropic filtering of tensor fields. Signal Processing [Special Issue on Tensor Signal Processing], 87(2):263–276, 2007.Google Scholar
  7. 7.
    O. Coulon, D. C. Alexander, and S. Arridge. Diffusion tensor magnetic resonance image regularization. Medical Image Analysis, 8(1):47–67, March 2004.CrossRefGoogle Scholar
  8. 8.
    R. Deriche, D. Tschumperle, C. Lenglet, and M. Rousson. Variational approaches to the estimation, regularization and segmentation of diffusion tensor images. In F. Paragios, Chen, editor, Mathematical Models in Computer Vision: The Handbook. Springer, 2005 edition, 2005.Google Scholar
  9. 9.
    P. Fillard, V. Arsigny, X. Pennec, and N. Ayache. Clinical DT-MRI estimation, smoothing and fiber tracking with log-Euclidean metrics. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI 2006), pages 786–789, Crystal Gateway Marriott, Arlington, Virginia, USA, Apr. 2006.Google Scholar
  10. 10.
    C. J. Galban, S. Maderwald, K. Uffmann, A. de Greiff, and M. E. Ladd. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. European Journal of Applied Physiology, 93(3):253–262, Dec 2004.CrossRefGoogle Scholar
  11. 11.
    C. J. Galban, S. Maderwald, K. Uffmann, and M. E. Ladd. A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle. NMR in Biomedicine, 2005.Google Scholar
  12. 12.
    J.-B. Hiriart-Urruty and C. Lemarechal. Fundamentals of Convex Analysis. Springer Verlag, Heidelberg, 2001.CrossRefzbMATHGoogle Scholar
  13. 13.
    T. Jebara, R. Kondor, and A. Howard. Probability product kernels. J. Mach. Learn. Res., 5:819–844, 2004.zbMATHMathSciNetGoogle Scholar
  14. 14.
    T. Joachims. Making large-scale support vector machine learning practical. In A. S. B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge, MA, 1998.Google Scholar
  15. 15.
    P. Khurd, R. Verma, and C. Davatzikos. Kernel-based manifold learning for statistical analysis of diffusion tensor images. In IPMI, pages 581–593, 2007.Google Scholar
  16. 16.
    N. Komodakis, G. Tziritas, and N. Paragios. Fast, approximately optimal solutions for single and dynamic MRFs. In CVPR, 2007.Google Scholar
  17. 17.
    J. Lafferty and G. Lebanon. Diffusion kernels on statistical manifolds. J. Mach. Learn. Res., 6:129–163, 2005.zbMATHMathSciNetGoogle Scholar
  18. 18.
    S. Lyu. Mercer kernels for object recognition with local features. In CVPR, 2005.Google Scholar
  19. 19.
    M. Maddah, W. E. L. Grimson, and S. K. Warfield. Statistical modeling and em clustering of white matter fiber tracts. In ISBI, pages 53–56, 2006.Google Scholar
  20. 20.
    M. Martin-Fernandez, C.-F. Westin, and C. Alberola-Lopez. 3D Bayesian regularization of diffusion tensor MRI using multivariate Gaussian Markov random fields. In MICCAI (1), pages 351–359, 2004.Google Scholar
  21. 21.
    L. J. O’Donnell and C.-F. Westin. Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Transactions on Medical Imaging, 26(11):1562–1575, November 2007.CrossRefGoogle Scholar
  22. 22.
    X. Pennec, P. Fillard, and N. Ayache. A Riemannian framework for tensor computing. International Journal of Computer Vision, 66(1):41–66, January 2006.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    R. Salvador, A. Pea, D. K. Menon, T. A. Carpenter, J. D. Pickard, and E. T. Bullmore. Formal characterization and extension of the linearized diffusion tensor model. Human Brain Mapping, 24(2):144–155, 2005.Google Scholar
  24. 24.
    E. Stejskal and J. Tanner. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. Journal of Chemical Physics, 42:288–292, 1965.CrossRefGoogle Scholar
  25. 25.
    K. Tsuda, G. Ratsch, and M. Warmuth. Matrix exponentiated gradient updates for on-line learning and Bregman projection. Journal of Machine Learning Research, 6:995–1018, 06 2005.Google Scholar
  26. 26.
    V. Vapnik. Statistical Learning Theory. Wiley, 1998.Google Scholar
  27. 27.
    F. Vos, M. Caan, K. Vermeer, C. Majoie, G. den Heeten, and L. van Vliet. Linear and kernel fisher discriminant analysis for studying diffusion tensor images in schizophrenia. In ISBI, pages 764–767, 2007.Google Scholar
  28. 28.
    Z. Wang, B. C. Vemuri, Y. Chen, and T. H. Mareci. A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI. IEEE Transactions on Medical Imaging, 23(8):930–939, 2004.CrossRefGoogle Scholar
  29. 29.
    J. Weickert, C. Feddern, M. Welk, B. Burgeth, and T. Brox. PDEs for tensor image processing. In J. Weickert and H. Hagen, editors, Visualization and Processing of Tensor Fields, pages 399–414. Springer, January 2006.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Siemens HealthcareLondonUK
  2. 2.Institute of Myology 47 Boulevard HôpitalParisFrance
  3. 3.Ecole Centrale PékinBeijingP.R. China
  4. 4.Center for Visual Computing, Department of Applied MathematicsEcole Centrale ParisParisFrance

Personalised recommendations