Intra and inter subject analyses of brain functional Magnetic Resonance Images (fMRI)

  • J. B. PolineEmail author
  • P. Ciuciu
  • A. Roche
  • B. Thirion


This chapter proposes a review of the most prominent issues in analysing brain functional Magnetic Resonance data. It introduces the domain for readers with no or little knowledge in the field. The introduction places the context and orients the reader in the many questions put to the data, and summarizes the currently most commonly applied approach. The second section deals with intra subject data analysis, emphasizing hemodynamic response estimation issues. The third section describes current approaches and advances in analysing group data in a standard coordinate system. The last section proposes new spatial models for group analyses. Overall, the chapter gives a brief overview of the field and details some specific advances that are important for application studies in cognitive neurosciences.


Independent Component Analysis Stimulus Type Blood Oxygen Level Dependant fMRI Data Independent Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Fodor, “Let your brain alone.”, London review of books, 1999.Google Scholar
  2. 2.
    R. M.E., M. AM, S. AZ, P. WJ, G. DA, and S. GL., “Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data”, Proc Natl Acad Sci, vol. 98(12), pp. 6859–64, June 2001.Google Scholar
  3. 3.
    S. Ogawa, T. Lee, A. Kay, and D. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation”, Proc. Natl. Acad. Sci. USA, vol. 87, pp. 9868–9872, 1990.CrossRefGoogle Scholar
  4. 4.
    J. Talairach and P. Tournoux, Co–Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging, Thieme Medical Publishers, Inc., Georg Thieme Verlag, Stuttgart, New York, 1988.Google Scholar
  5. 5.
    K. Worsley, C. Liao, J. Aston, V. Petre, G. Duncan, F. Morales, and A. Evans, “A general statistical analysis for fMRI data”, Neuroimage, vol. 15, pp. 1–15, Jan. 2002.CrossRefGoogle Scholar
  6. 6.
    J.-F. Mangin, D. Rivière, O. Coulon, C. Poupon, A. Cachia, Y. Cointepas, J.-B. Poline, D. L. Bihan, J. Régis, and D. Papadopoulos-Orfanos, “Coordinate-based versus structural approaches to brain image analysis”, Artificial Intelligence in Medicine, vol. 30, pp. 177–197, 2004.CrossRefGoogle Scholar
  7. 7.
    G. Yovel and N. Kanwisher, “Face perception: domain specific, not process specific.”, Neuron, vol. 44, pp. 747–8, Dec. 2004.CrossRefGoogle Scholar
  8. 8.
    G. H. Glover, “Deconvolution of impulse response in event-related BOLD fMRI”, Neuroimage, vol. 9, pp. 416–429, 1999.CrossRefGoogle Scholar
  9. 9.
    W. D. Penny, S. Kiebel, and K. J. Friston, “Variational Bayesian inference for fMRI time series”, Neuroimage, vol. 19, pp. 727–741, 2003.CrossRefGoogle Scholar
  10. 10.
    M. Woolrich, M. Jenkinson, J. Brady, and S. Smith, “Fully Bayesian spatio-temporal modelling of fMRI data”, IEEE Trans. Med. Imag., vol. 23, pp. 213–231, Feb. 2004.CrossRefGoogle Scholar
  11. 11.
    D. A. Handwerker, J. M. Ollinger,, and M. D’Esposito, “Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses”, Neuroimage, vol. 21, pp. 1639–1651, 2004.CrossRefGoogle Scholar
  12. 12.
    G. K. Aguirre, E. Zarahn, and M. D’Esposito, “The variability of human BOLD hemodynamic responses”, Neuroimage, vol. 7, pp. 574, 1998.Google Scholar
  13. 13.
    F. M. Miezin, L. Maccotta, J. M. Ollinger, S. E. Petersen, and R. L. Buckner, “Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing”, Neuroimage, vol. 11, pp. 735–759, 2000.CrossRefGoogle Scholar
  14. 14.
    J. Neumann and G. Lohmann, “Bayesian second-level analysis of functional magnetic resonance images”, Neuroimage, vol. 20, pp. 1346–1355, 2003.CrossRefGoogle Scholar
  15. 15.
    S. Makni, P. Ciuciu, J. Idier, and J.-B. Poline, “Joint detection-estimation of brain activity in functional MRI: a multichannel deconvolution solution”, IEEE Trans. Signal Processing, vol. 53, pp. 3488–3502, Sep. 2005.CrossRefMathSciNetGoogle Scholar
  16. 16.
    T. Vincent, P. Ciuciu, and J. Idier, “Spatial mixture modelling for the joint detection-estimation of brain activity in fMRI”, in 32th Proc. IEEE ICASSP, Honolulu, Hawaii, Apr. 2007, vol. I, pp. 325–328.Google Scholar
  17. 17.
    B. Thirion, G. Flandin, P. Pinel, A. Roche, P. Ciuciu, and J.-B. Poline, “Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets”, Hum. Brain Mapp., vol. 27, pp. 678–693, Aug. 2006.CrossRefGoogle Scholar
  18. 18.
    B. Thyreau, B. Thirion, G. Flandin, and J.-B. Poline, “Anatomo-functional description of the brain: a probabilistic approach”, in Proc. 31th Proc. IEEE ICASSP, Toulouse, France, May 2006, vol. V, pp. 1109–1112.Google Scholar
  19. 19.
    P. Good, Permutation, Parametric, and Bootstrap Tests of Hypotheses, Springer, 3rd edition edition, 2005.Google Scholar
  20. 20.
    S. Mériaux, A. Roche, B. Thirion, and G. Dehaene-Lambertz, “Robust statistics for nonparametric group analysis in fMRI”, in Proc. 3th Proc. IEEE ISBI, Arlington, VA, Apr. 2006, pp. 936–939.Google Scholar
  21. 21.
    J. Ashburner, “A fast diffeomorphic image registration algorithm.”, Neuroimage, vol. 38, pp. 95–113, Oct 2007.CrossRefGoogle Scholar
  22. 22.
    B. Fischl, N. Rajendran, E. Busa, J. Augustinack, O. Hinds, B. T. T. Yeo, H. Mohlberg, K. Amunts, and K. Zilles, “Cortical folding patterns and predicting cytoarchitecture.”, Cereb Cortex, Dec 2007.Google Scholar
  23. 23.
    D. Rivière, J.-F. Mangin, D. Papadopoulos-Orfanos, J.-M. Martinez, V. Frouin, and J. Régis, “Automatic recognition of cortical sulci of the human brain using a congregation of neural networks”, Medical Image Analysis, vol. 6, pp. 77–92, 2002.CrossRefGoogle Scholar
  24. 24.
    B. Fischl, M. I. Sereno, R. B. Tootell, and A. M. Dale, “High-resolution intersubject averaging and a coordinate system for the cortical surface.”, Hum Brain Mapp, vol. 8, pp. 272–284, 1999.CrossRefGoogle Scholar
  25. 25.
    M. Brett, I. Johnsrude, and A. Owen, “The problem of functional localization in the human brain.”, Nature Reviews Neuroscience, vol. 3, pp. 243–249, Mar. 2002.CrossRefGoogle Scholar
  26. 26.
    R. S. Desikan, F. Ségonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, R. L. Buckner, A. M. Dale, R. P. Maguire, B. T. Hyman, M. S. Albert, and R. J. Killiany, “An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest.”, Neuroimage, vol. 31, pp. 968–980, July 2006.CrossRefGoogle Scholar
  27. 27.
    G. Flandin, F. Kherif, X. Pennec, G. Malandain, N. Ayache, and J.-B. Poline, “Improved detection sensitivity of functional MRI data using a brain parcellation technique”, in Proc. 5th MICCAI, Tokyo, Japan, Sep. 2002, LNCS 2488 (Part I), pp. 467–474, Springer Verlag.Google Scholar
  28. 28.
    O. Coulon, J.-F. Mangin, J.-B. Poline, M. Zilbovicius, D. Roumenov, Y. Samson, V. Frouin, and I. Bloch, “Structural group analysis of functional activation maps”, Neuroimage, vol. 11, pp. 767–782, 2000.CrossRefGoogle Scholar
  29. 29.
    B. Thirion, P. Pinel, A. Tucholka, A. Roche, P. Ciuciu, J.-F. Mangin, and J.-B. Poline, “Structural analysis of fMRI data revisited: Improving the sensitivity and reliability of fMRI group studies”, IEEE Trans. Med. Imag., vol. 26, pp. 1256–1269, Sep. 2007.CrossRefGoogle Scholar
  30. 30.
    B. Thirion, P. Pinel, and J.-B. Poline, “Finding landmarks in the functional brain: detection and use for group characterization.”, Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv, vol. 8, pp. 476–483, 2005.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • J. B. Poline
    • 1
    Email author
  • P. Ciuciu
    • 1
    • 2
  • A. Roche
    • 3
  • B. Thirion
    • 1
    • 2
  1. 1.CEA, DSV, I2BMGif-sur-YvetteFrance
  2. 2.Parietal project-teamINRIAPalaiseauFrance
  3. 3.Siemens Healthcare/CHUV Dept Radiology/EPFL LTS5Advanced Clinical Imaging Technology groupLausanneSwitzerland

Personalised recommendations