Medical Image Processing for Analysis of Colon Motility

  • N. NavabEmail author
  • B. Glocker
  • O. Kutter
  • S. M. Kirchhoff
  • M. Reiser


A precise analysis and diagnosis of colon motility dysfunctions with current methods is almost unachievable. This makes it extremely difficult for the clinical experts to decide for the right intervention such as colon resection. The use of Cine MRI for visualizing the colon motility is a very promising technique. In addition, if image segmentation and qualitative motion analysis provide the necessary tools, it could provide the appropriate diagnostic solution. In this work we define necessary steps in the image processing chain to obtain clinical relevant measurements for a computer aided diagnosis of colon motility dysfunctions. For each step, we develop methods for an efficient handling of the MRI time sequences. There is need for compensating the breathing motion since no respiratory gating can be used during acquisition. We segment the colon using a graph-cuts approach in 2D over time for further analysis and visualization. The analysis of the large bowel motility is done by tracking the diameter of the colon during the propagation of the peristaltic wave. The main objective of this work is to automatize the assessment of clinical parameters which can be used to define a clinical index for motility pathologies.


Large Bowel Motion Compensation Colon Motility Respiratory Gating Breathing Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Bassotti and M. Crowell. Colon and rectum: normal function and clinical disorders. Schuster Atlas of Gastrointestinal Motility in Health and Disease, pages 241–252, 2002.Google Scholar
  2. 2.
    E. Bonapace, A. Maurer, S. Davidoff, and et al. Whole gut transit scintigraphy in the clinical evaluation of patients with upper and lower gastrointestinal symptoms. Am J Gastroenterol., 95:2838–2847, 2000.Google Scholar
  3. 3.
    J.-Y. Bouguet. Pyramidal Implementation of the Lucas-Kanade Feature Tracker. OpenCV Documentation, Microprocessor Research Labs, Intel Corporation, 1999.Google Scholar
  4. 4.
    Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In Proc. International Conference on Computer Vision (ICCV), volume I, pages 105–112, 2001.Google Scholar
  5. 5.
    Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(9):1124–1137, Sept. 2004.Google Scholar
  6. 6.
    S. Buhmann, C. Kirchhoff, and et al. Assessment of large bowel motility by cine magnetic resonance imaging using two different prokinetic agents. Investigative Radiology, 40, 11: 689–694, 2005.Google Scholar
  7. 7.
    S. Buhmann, C. Kirchhoff, and et al. Visualization and quantification of large bowel motility with functional cine-mri. Fortschritte auf dem Gebiet der Roentgenstrahlen und der bildgebenden Verfahren (RoeFo), 177:35–40, 2005.Google Scholar
  8. 8.
    R. Hagger, D. Kumar, M. Benson, and et al. Periodic colonic motor activity identified by 24-h pancolonic ambulatory manometry in humans. Neurogastroenterol Motil., pages 271–278, 2002.Google Scholar
  9. 9.
    M. Hansen. Small intestinal manometry. Physiol Res., 51:541–556, 2002.Google Scholar
  10. 10.
    C. Harris and M. Stephens. A combined corner and edge detector. In Proc. Alvey Vision Conf., pages 147–151, 1988.Google Scholar
  11. 11.
    O. Kutter, S. Kirchhoff, M. Berkovic, M. Reiser, and N. Navab. Spatio-temporal registration in multiplane mri acquisitions for 3d colon motiliy analysis. In SPIE Medical Imaging, 2008.Google Scholar
  12. 12.
    A. Lienemann, D. Sprenger, H. Steitz, and et al. Detection and mapping of intraabdominal adhesions by using functional cine mr imaging: preliminary results. Radiology, 217:421–425, 2000.Google Scholar
  13. 13.
    K. Palágyi, E. Sorantin, E. Balogh, A. Kuba, C. Halmai, B. Erdöhelyi, and K. Hausegger. A sequential 3d thinning algorithm and its medical applications. In Proc. Int’l Conf. Information Processing in Medical Imaging (IPMI). Springer, 2001.Google Scholar
  14. 14.
    J. Shi and C. Tomasi. Good features to track. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’94), pages 593–600, 1994.Google Scholar
  15. 15.
    C. Zahlten, H. Jürgens, and H.-O. Peitgen. Reconstruction of branching blood vessels from ct-data. In Eurographics Workshop of Visualization in Scientific Computing, pages 161–168. Springer, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. Navab
    • 1
    Email author
  • B. Glocker
    • 3
  • O. Kutter
    • 1
  • S. M. Kirchhoff
    • 2
  • M. Reiser
    • 2
  1. 1.Institut fuer Informatik, Computer Aided Medical Procedures (CAMP)Technische Universitaet MuenchenGarchingGermany
  2. 2.Institut fuer Klinische RadiologieLudwig-Maximilians-Universitaet MuenchenMuenchenGermany
  3. 3.Department of ComputingBioMedIA Group, Imperial College LondonLondonUK

Personalised recommendations