Advertisement

Fuzzy methods in medical imaging

  • I. BlochEmail author

Abstract

Fuzzy sets theory is of great interest in medical image processing, for dealing with imprecise information and knowledge. It provides a consistent mathematical framework for knowledge representation, information modeling at different levels, fusion of heterogeneous information, reasoning and decision making. In this chapter, we provide an overview of the potential of this theory in medical imaging, in particular for classification, segmentation and recognition of anatomical and pathological structures.

Keywords

Membership Function Grey Level Fuzzy Rule Spatial Relation Partial Volume Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging, 21(3):193–199, March 2002.CrossRefGoogle Scholar
  2. 2.
    K. Arakawa. Fuzzy Rule-Based Image Processing with Optimization. In E. E. Kerre and M. Nachtegael, editors, Fuzzy Techniques in Image Processing, Studies in Fuzziness and Soft Computing, chapter 8, pages 222–247. Physica-Verlag, Springer, 2000.CrossRefGoogle Scholar
  3. 3.
    J. Atif, C. Hudelot, G. Fouquier, I. Bloch, and E. Angelini. From Generic Knowledge to Specific Reasoning for Medical Image Interpretation using Graph-based Representations. In International Joint Conference on Artificial Intelligence IJCAI’07, pages 224–229, Hyderabad, India, jan 2007.Google Scholar
  4. 4.
    E. Bengoetxea, P. Larranaga, I. Bloch, A. Perchant, and C. Boeres. Inexact Graph Matching by Means of Estimation of Distribution Algorithms. Pattern Recognition, 35:2867–2880, 2002.CrossRefzbMATHGoogle Scholar
  5. 5.
    J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New-York, 1981.CrossRefzbMATHGoogle Scholar
  6. 6.
    J. C. Bezdek, J. Keller, R. Krishnapuram, and N. R. Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Handbooks of Fuzzy Sets series. Kluwer Academic Publisher, Boston, 1999.zbMATHGoogle Scholar
  7. 7.
    I. Bloch. Information Combination Operators for Data Fusion: A Comparative Review with Classification. IEEE Transactions on Systems, Man, and Cybernetics, 26(1):52–67, 1996.CrossRefGoogle Scholar
  8. 8.
    I. Bloch. Fuzzy Relative Position between Objects in Image Processing: a Morphological Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(7):657–664, 1999.CrossRefGoogle Scholar
  9. 9.
    I. Bloch. On Fuzzy Distances and their Use in Image Processing under Imprecision. Pattern Recognition, 32(11):1873–1895, 1999.CrossRefGoogle Scholar
  10. 10.
    I. Bloch. Fuzzy Spatial Relationships for Image Processing and Interpretation: A Review. Image and Vision Computing, 23(2):89–110, 2005.CrossRefGoogle Scholar
  11. 11.
    I. Bloch. Spatial Reasoning under Imprecision using Fuzzy Set Theory, Formal Logics and Mathematical Morphology. International Journal of Approximate Reasoning, 41:77–95, 2006.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    I. Bloch. Fuzzy Skeleton by Influence Zones - Application to Interpolation between Fuzzy Sets. Fuzzy Sets and Systems, 159:1973–1990, 2008.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    I. Bloch, L. Aurdal, D. Bijno, and J. Müller. Estimation of Class Membership Functions for Grey-Level Based Image Fusion. In ICIP’97, volume III, pages 268–271, Santa Barbara, CA, Oct. 1997.Google Scholar
  14. 14.
    I. Bloch, O. Colliot, O. Camara, and T. Géraud. Fusion of Spatial Relationships for Guiding Recognition. Example of Brain Structure Recognition in 3D MRI. Pattern Recognition Letters, 26:449–457, 2005.Google Scholar
  15. 15.
    I. Bloch, O. Colliot, and R. Cesar. On the Ternary Spatial Relation Between. IEEE Transactions on Systems, Man, and Cybernetics SMC-B, 36(2):312–327, apr 2006.Google Scholar
  16. 16.
    I. Bloch, T. Géraud, and H. Maître. Representation and Fusion of Heterogeneous Fuzzy Information in the 3D Space for Model-Based Structural Recognition - Application to 3D Brain Imaging. Artificial Intelligence, 148:141–175, 2003.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    I. Bloch and H. Maître. Fuzzy Mathematical Morphologies: A Comparative Study. Pattern Recognition, 28(9):1341–1387, 1995.CrossRefMathSciNetGoogle Scholar
  18. 18.
    I. Bloch, H. Maître, and M. Anvari. Fuzzy Adjacency between Image Objects. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5(6):615–653, 1997.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    I. Bloch, C. Pellot, F. Sureda, and A. Herment. Fuzzy Modelling and Fuzzy Mathematical Morphology applied to 3D Reconstruction of Blood Vessels by Multi-Modality Data Fusion. In D. D. R. Yager and H. Prade, editors, Fuzzy Set Methods in Information Engineering: A Guided Tour of Applications, chapter 5, pages 93–110. John Wiley and Sons, New-York, 1996.Google Scholar
  20. 20.
    S. Bothorel, B. Bouchon Meunier, and S. Muller. A fuzzy logic based approach for semiological analysis of microcalcifications in mammographic images. International Journal of Intelligent Systems, 12(11-12):819–848, 1997.CrossRefGoogle Scholar
  21. 21.
    B. Bouchon-Meunier, M. Rifqi, and S. Bothorel. Towards General Measures of Comparison of Objects. Fuzzy Sets and Systems, 84(2):143–153, Sept. 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    R. Cesar, E. Bengoetxea, and I. Bloch. Inexact Graph Matching using Stochastic Optimization Techniques for Facial Feature Recognition. In International Conference on Pattern Recognition ICPR 2002, volume 2, pages 465–468, Québec, aug 2002.Google Scholar
  23. 23.
    H. D. Cheng and J. R. Chen. Automatically Determine the Membership Function based on the Maximum Entropy Principle. In 2nd Annual Joint Conf. on Information Sciences, pages 127–130, Wrightsville Beach, NC, 1995.Google Scholar
  24. 24.
    C. Ciofolo and C. Barillot. Brain Segmentation with Competitive Level Sets and Fuzzy Control. In 19th International Conference on Information Processing in Medical Imaging, IPMI 2005, Glenwood Springs, CO, USA, 2005.Google Scholar
  25. 25.
    M. R. Civanlar and H. J. Trussel. Constructing Membership Functions using Statistical Data. Fuzzy Sets and Systems, 18:1–13, 1986.CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    O. Colliot, O. Camara, and I. Bloch. Integration of Fuzzy Spatial Relations in Deformable Models - Application to Brain MRI Segmentation. Pattern Recognition, 39:1401–1414, 2006.CrossRefGoogle Scholar
  27. 27.
    O. Colliot, A. Tuzikov, R. Cesar, and I. Bloch. Approximate Reflectional Symmetries of Fuzzy Objects with an Application in Model-Based Object Recognition. Fuzzy Sets and Systems, 147:141–163, 2004.CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    V. Daanen, J. Tonetti, and J. Troccaz. A Fully Automated Method for the Delineation of Osseous Interface in Ultrasound Images. In MICCAI, volume LNCS 3216, pages 549–557, 2004.Google Scholar
  29. 29.
    B. B. Devi and V. V. S. Sarma. Estimation of Fuzzy Memberships from Histograms. Information Sciences, 35:43–59, 1985.CrossRefzbMATHGoogle Scholar
  30. 30.
    D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New-York, 1980.zbMATHGoogle Scholar
  31. 31.
    D. Dubois and H. Prade. Unfair Coins and Necessity Measures: Towards a Possibilistic Interpretation of Histograms. Fuzzy Sets and Systems, 10(1):15–20, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    D. Dubois and H. Prade. A Review of Fuzzy Set Aggregation Connectives. Information Sciences, 36:85–121, 1985.CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Y. Feng and W. Chen. Brain MR image segmentation using fuzzy clustering with spatial constraints based on markov random field theory. In Second International Workshop on Medical Imaging and Augmented Reality (MIAR), volume 3150 of Lecture Notes in Computer Science, pages 188–195, 2004.Google Scholar
  34. 34.
    G. Fouquier, J. Atif, and I. Bloch. Local Reasoning in Fuzzy Attributes Graphs for Optimizing Sequential Segmentation. In 6th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, GbR’07, volume LNCS 4538, pages 138–147, Alicante, Spain, jun 2007.Google Scholar
  35. 35.
    G. Fouquier, J. Atif, and I. Bloch. Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations. Computer Vision and Image Understanding, 116(1):146–165, Jan. 2012.CrossRefGoogle Scholar
  36. 36.
    C. Hudelot, J. Atif, and I. Bloch. Fuzzy Spatial Relation Ontology for Image Interpretation. Fuzzy Sets and Systems, 159:1929–1951, 2008.CrossRefMathSciNetGoogle Scholar
  37. 37.
    H. Khotanlou, J. Atif, E. Angelini, H. Duffau, and I. Bloch. Adaptive Segmentation of Internal Brain Structures in Pathological MR Images Depending on Tumor Types. In IEEE International Symposium on Biomedical Imaging (ISBI), pages 588–591, Washington DC, USA, apr 2007.Google Scholar
  38. 38.
    H. Khotanlou, O. Colliot, J. Atif, and I. Bloch. 3D Brain Tumor Segmentation in MRI Using Fuzzy Classification, Symmetry Analysis and Spatially Constrained Deformable Models. Fuzzy Sets and Systems, 160:1457–1473, 2009.CrossRefMathSciNetGoogle Scholar
  39. 39.
    G. J. Klir and B. Parviz. Probability-Possibility Transformations: A Comparison. International Journal of General Systems, 21:291–310, 1992.CrossRefzbMATHGoogle Scholar
  40. 40.
    R. Krishnapuram and J. M. Keller. A Possibilistic Approach to Clustering. IEEE Transactions on Fuzzy Systems, 1(2):98–110, 1993.CrossRefGoogle Scholar
  41. 41.
    T. Law, H. Itoh, and H. Seki. Image Filtering, Edge Detection and Edge Tracing using Fuzzy Reasoning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:481–491, 1996.CrossRefGoogle Scholar
  42. 42.
    C. S. Lee and Y. H. Kuo. Adaptive Fuzzy Filter and its Applications to Image Enhancement. In E. E. Kerre and M. Nachtegael, editors, Fuzzy Techniques in Image Processing, Studies in Fuzziness and Soft Computing, chapter 6, pages 172–193. Physica-Verlag, Springer, 2000.CrossRefGoogle Scholar
  43. 43.
    C. S. Lee, Y. H. Kuo, and P. T. Yu. Weighted Fuzzy Mean Filters for Image Processing. Fuzzy Sets and Systems, 89:157–180, 1997.CrossRefGoogle Scholar
  44. 44.
    A. W. C. Liew and H. H. Yan. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Transactions on Medical Imaging, 22(9):1063–1075, September 2003.CrossRefGoogle Scholar
  45. 45.
    L. Ma and R. C. Staunton. A modified fuzzy c-means image segmentation algorithm for use with uneven illumination patterns. Pattern Recognition, 40(11):3005–3011, 2007.CrossRefzbMATHGoogle Scholar
  46. 46.
    A. Moreno, C. M. Takemura, O. Colliot, O. Camara, and I. Bloch. Using Anatomical Knowledge Expressed as Fuzzy Constraints to Segment the Heart in CT images. Pattern Recognition, 41:2525–2540, 2008.CrossRefGoogle Scholar
  47. 47.
    O. Nempont, J. Atif, E. Angelini, and I. Bloch. Structure Segmentation and Recognition in Images Guided by Structural Constraint Propagation. In European Conference on Artificial Intelligence ECAI, pages 621–625, Patras, Greece, jul 2008.Google Scholar
  48. 48.
    O. Nempont, J. Atif, and I. Bloch. A constraint propagation approach to structural model based image segmentation and recognition. Information Sciences, 246:1–27, 2013.CrossRefMathSciNetGoogle Scholar
  49. 49.
    N. R. Pal, K. Pal, and J. C. Bezdek. A mixed c-Mean clustering model. In IEEE International Conference on Fuzzy Systems, volume 1, pages 11–21, July 1997.Google Scholar
  50. 50.
    N. R. Pal, K. Pal, J. M. Keller, and J. C. Bezdek. A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 13(4):517–530, Aug. 2005.CrossRefMathSciNetGoogle Scholar
  51. 51.
    S. K. Pal, R. A. King, and A. A. Hashim. Automatic Grey-Level Thresholding through Index of Fuzziness and Entropy. Pattern Recognition Letters, 1:141–146, 1983.CrossRefGoogle Scholar
  52. 52.
    S. K. Pal and A. Rosenfeld. Image Enhancement and Thresholding by Optimization of Fuzzy Compactness. Pattern Recognition Letters, 7:77–86, 1988.CrossRefzbMATHGoogle Scholar
  53. 53.
    G. Palma, G. Peters, S. Muller, and I. Bloch. Masses Classification using Fuzzy Active Contours and Fuzzy Decision Trees. In SPIE Medical Imaging: Computer-Aided Diagnosis, number 6915, San Diego, CA, USA, feb 2008.Google Scholar
  54. 54.
    A. Perchant and I. Bloch. Fuzzy Morphisms between Graphs. Fuzzy Sets and Systems, 128(2):149–168, 2002.CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    A. Perchant, C. Boeres, I. Bloch, M. Roux, and C. Ribeiro. Model-based Scene Recognition Using Graph Fuzzy Homomorphism Solved by Genetic Algorithm. In GbR’99 2nd International Workshop on Graph-Based Representations in Pattern Recognition, pages 61–70, Castle of Haindorf, Austria, 1999.Google Scholar
  56. 56.
    O. Perez-Oramas. Contribution à une méthodologie d’intégration de connaissances pour le traitement d’images. Application à la détection de contours par règles linguistiques floues. PhD thesis, Université de Nancy, 2000.Google Scholar
  57. 57.
    G. Peters. Computer-Aided Detection for Digital Breat Tomosynthesis. PhD thesis, Ecole Nationale Supérieure des Télécommunications, ENST2007E012, jun 2007.Google Scholar
  58. 58.
    G. Peters, S. Muller, S. Bernard, R. Iordache, and I. Bloch. Reconstruction-Independent 3D CAD for Mass Detection in Digital Breast Tomosynthesis using Fuzzy Particles. In SPIE Medical Imaging, volume 6147, San Diego, CA, USA, feb 2006.Google Scholar
  59. 59.
    D. L. Pham. Spatial models for fuzzy clustering. Computer Vision and Image Understanding, 84(2):285–297, November 2001.CrossRefzbMATHGoogle Scholar
  60. 60.
    A. Rosenfeld. The Fuzzy Geometry of Image Subsets. Pattern Recognition Letters, 2:311–317, 1984.CrossRefGoogle Scholar
  61. 61.
    C. Rosse and J. L. V. Mejino. A Reference Ontology for Bioinformatics: The Foundational Model of Anatomy. Journal of Biomedical Informatics, 36:478–500, 2003.CrossRefGoogle Scholar
  62. 62.
    F. Russo and G. Ramponi. Introducing the Fuzzy Median Filter. In Signal Processing VII: Theories and Applications, pages 963–966, 1994.Google Scholar
  63. 63.
    F. Russo and G. Ramponi. An Image Enhancement Technique based on the FIRE Operator. In IEEE Int. Conf. on Image Processing, volume I, pages 155–158, Washington DC, 1995.Google Scholar
  64. 64.
    S. Shen, W. Sandham, M. Granat, and A. Sterr. MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Transactions on Information Technology in Biomedicine, 9(3):459–467, 2005.CrossRefGoogle Scholar
  65. 65.
    N. Sladoje and J. Lindblad. Representation and Reconstruction of Fuzzy Disks by Moments. Fuzzy Sets and Systems, 158(5):517–534, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  66. 66.
    N. Sladoje, I. Nyström, and P. K. Saha. Perimeter and Area Estimations of Digitized Objects with Fuzzy Borders. In DGCI 2003 LNCS 2886, pages 368–377, Napoli, Italy, 2003.Google Scholar
  67. 67.
    H. R. Tizhoosh. Fuzzy Image Enhancement: An Overview. In E. E. Kerre and M. Nachtegael, editors, Fuzzy Techniques in Image Processing, Studies in Fuzziness and Soft Computing, chapter 5, pages 137–171. Physica-Verlag, Springer, 2000.Google Scholar
  68. 68.
    J. K. Udupa and S. Samarasekera. Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation. Graphical Models and Image Processing, 58(3):246–261, 1996.CrossRefGoogle Scholar
  69. 69.
    C. Xu, D. Pham, M. Rettmann, D. Yu, and J. Prince. Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Transactions on Medical Imaging, 18(6): 467–480, June 1999.CrossRefGoogle Scholar
  70. 70.
    R. R. Yager. Connectives and Quantifiers in Fuzzy Sets. Fuzzy Sets and Systems, 40:39–75, 1991.CrossRefzbMATHMathSciNetGoogle Scholar
  71. 71.
    L. A. Zadeh. The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Information Sciences, 8:199–249, 1975.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Signal and Image ProcessingTelecom ParisTech - CNRS LTCIParisFrance

Personalised recommendations