Advertisement

Physical Model Based Recovery of Displacement and Deformations from 3D Medical Images

  • P. Yang
  • C. Delorenzo
  • X. Papademetris
  • J. S. Duncan
Chapter

Abstract

Estimating tissue displacement and deformation from time-varying medical images is a common problem in biomedical image analysis. For example, in order to better manage patients with ischemic heart disease, it would be useful to know their current extent of injury. This can be assessed by accurately tracking the motion of the left ventricle of the beating heart. Another example of this type of application is estimating the displacement of brain tissue during neurosurgery. The latter application is necessary because the presurgical planning for these delicate surgeries is based on images that may not accurately reflect the intraopertave brain (due to the action of gravity and other forces). In both examples, the tissue deformation cannot be measured directly. Instead, a sparse set of (potentially noisy) displacement estimates are extracted from acquired images. In this chapter, we explain how to use the physical properties of underlying organs or structures to guide such estimations of deformation, using neurosurgery and cardiac motion as example cases.

Keywords

Boundary Element Method Cortical Surface Boundary Node Stereo Image Biomechanical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.A. Amini, Y. Chen, R.W. Curwen, V. Mani, and J. Sun. Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI. IEEE Trans. Med. Imag., 17(3):344–356, 1998.CrossRefGoogle Scholar
  2. 2.
    Neculai Archip, Andriy Fedorov, Bryn Lloyd, Nikos Chrisochoides, Alexandra Golby, Peter M. Black, and Simon K. Warfield. Integration of patient specific modeling and advanced image processing techniques for image-guided neurosurgery. In Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display, Proceedings of the SPIE, volume 6141, pages 422–429, San Diego, CA, February 12-14 2006.Google Scholar
  3. 3.
    Michel A. Audette, Kaleem Siddiqi, Frank P. Ferrie, and Terry M. Peters. An integrated range-sensing, segmentation and registration framework for the characterization of intra-surgical brain deformations in image-guided surgery. Computer Vision and Image Understanding, 89(2-3):226–251, February - March 2003.Google Scholar
  4. 4.
    Michel A. Audette, Kaleem Siddiqi, and Terry M. Peters. Level-set surface segmentation and fast cortical range image tracking for computing intrasurgical deformations. In Medical Image Computing and Computer-Assisted Intervention (MIC-CAI), volume 1679, pages 788–797, Cambridge, UK, September 19-22 1999.Google Scholar
  5. 5.
    H. Azhari, J. Weiss, W. Rogers, C. Siu, and E. Shapiro. A noninvasive comparative study of myocardial strains in ischemic canine hearts using tagged MRI in 3D. American Journal of Physiology, 268, 1995.Google Scholar
  6. 6.
    Tamer Ba¸sar and Geert Jan Olsder. Dynamic Noncooperative Game Theory, 2nd Ed. Academic Press, New York, 1995.Google Scholar
  7. 7.
    K. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, New Jersey, 1982.Google Scholar
  8. 8.
    C.A. Brebbia and J. Dominguez. Boundary Elements An Introductory Course. Computational Mechanics Publications, 1998.Google Scholar
  9. 9.
    Alize Cao, Prashanth Dumpuri, and Michael I. Miga. Tracking cortical surface deformations based on vessel structure using a laser range scanner. In International Symposium on Biomedical Imaging (ISBI), pages 522–525, Washington, DC, USA, April 6-9 2006.Google Scholar
  10. 10.
    Alexandra Chabrerie, Fatma Ozlen, Shin Nakajima, Michael Leventon, Hideki Atsumi1, Eric Grimson, Erwin Keeve, Sandra Helmers, James Riviello Jr., Gregory Holmes, Frank Duffy, Ferenc Jolesz, Ron Kikinis, and Peter Black. Three-dimensional reconstruction and surgical navigation in pediatric epilepsy surgery. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 1496, pages 74–83, Cambridge, MA, October 11-13 1998.Google Scholar
  11. 11.
    Amit Chakraborty and James S. Duncan. Game-Theoretic integration for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(1):12–30, January 1999.CrossRefGoogle Scholar
  12. 12.
    G. E. Christensen, R. D. Rabbitt, and M. I. Miller. 3D brain mapping using deformable neuroanatomy. Physics in Medicine and Biology, 39:609–618, 1994.CrossRefGoogle Scholar
  13. 13.
    H. Chui and A. Rangarajan. A new algorithm for non-rigid point matching. In IEEE Conf. Computer Vision and Pattern Recognition, volume 2, pages 44–51, 2000.Google Scholar
  14. 14.
    Olivier Clatz, Herv´e Delingette, Ion-Florin Talos, Alexandra J. Golby, Ron Kikinis, Ferenc A. Jolesz, Nicholas Ayache, and Simon K. Warfield. Robust nonrigid registration to capture brain shift from intraoperative MRI. IEEE Transactions on Medical Imaging, 24(11):1417–1427, November 2005.CrossRefGoogle Scholar
  15. 15.
    L. Cohen, N. Ayache, and P. Sulger. Tracking points on deformable objects using curvature information. Lecture Notes in Computer Science (ECCV92), pages 458–466, 1992.Google Scholar
  16. 16.
    Herv´e Delingette, Xavier Pennec, Luc Soler, Jacques Marescaux, and Nicholas Ayache. Computational models for image-guided robot-assisted and simulated medical interventions. Proceedings of the IEEE, 94(9):1678–1688, September 2006.Google Scholar
  17. 17.
    T.S. Denney Jr and J.L. Prince. Reconstruction of 3d left ventricular motion from planar tagged cardiac mr images: An estimation theoretic approach. IEEE Transactions on Medical Imaging, 14(4):625–635, 1995.CrossRefGoogle Scholar
  18. 18.
    Valerie Duay, Tuhin K. Sinha, Pierre-Fran¸cois D’Haese, Michael I. Miga, and Benoit M. Dawant. Non-rigid registration of serial intra-operative images for automatic brain shift estimation. In Workshop on Biomedical Image Registration (WBIR), volume 2717, pages 61–70, Philadelphia, PA, June 23-24 2003.Google Scholar
  19. 19.
    Prashanth Dumpuri, Reid C. Thompson, Tuhin K. Sinha, and Michael I. Miga. Automated brain shift correction using a pre-computed deformation atlas. In Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display, Proceedings of the SPIE, volume 6141, pages 430–437, San Diego, CA, February 12-14 2006.Google Scholar
  20. 20.
    Matthieu Ferrant, Arya Nabavi, Benoît Macq, P. M. Black, Ferenc A. Jolesz, Ron Kikinis, and Simon K. Warfield. Serial registration of intraoperative MR images of the brain. Medical Image Analysis, 6(4):337–359, December 2002.CrossRefGoogle Scholar
  21. 21.
    J. C. Gee, D. R. Haynor, L. Le Briquer, and R. K. Bajcsy. Advances in elastic matching theory and its implementation. In CVRMed-MRCAS, Grenoble, France, March 1997.CrossRefGoogle Scholar
  22. 22.
    David T. Gering, Arya Nabavi, Ron Kikinis, W. Eric L. Grimson, Nobuhiko Hata, Peter Everett, Ferenc A. Jolesz, and William M. Wells III. An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 1679, pages 809–819, Cambridge, UK, September 19-22 1999.Google Scholar
  23. 23.
    David G. Gobbi, Roch M. Comeau, and Terry M. Peters. Ultrasound/MRI overlay with image warping for neurosurgery. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 1935, pages 106–114, Pittsburgh, PA, October 11-14 2000.Google Scholar
  24. 24.
    W. E. L. Grimson, G. J. Ettinger, S. J. White, T. Lozano-P´erez, W. M. Wells, and R. Kikinis. An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE Transactions on Medical Imaging, 15(2):129–140, April 1996.CrossRefGoogle Scholar
  25. 25.
    J. M. Guccione and A. D. McCulloch. Finite element modeling of ventricular mechanics. In P. J. Hunter, A. McCulloch, and P. Nielsen, editors, Theory of Heart, pages 122–144. Springer-Verlag, Berlin, 1991.Google Scholar
  26. 26.
    E. Haber, D.N. Metaxas, and L. Axel. Motion analysis of the right ventricle from mri images. Medical Image Computing and Computer Aided Intervention, pages 177–188, 1998.Google Scholar
  27. 27.
    Peter Hastreiter, Christof Rezk-Salama, Grzegorz Soza, Michael Bauer, Günther Greiner, Rudolf Fahlbusch, Oliver Ganslandt, and Christopher Nimsky. Strategies for brain shift evaluation. Medical Image Analysis, 8(4):447–464, December 2004.CrossRefGoogle Scholar
  28. 28.
    W. Hsu, J. Huahes, and H. Kaufman. Direct manipulation of free-form deformations. Computer Graphics, 26(2):177–184, 1992.CrossRefGoogle Scholar
  29. 29.
    K. H. Huebner, E. A. Thornton, and T. G. Byrom. The Finite Element Method For Engineers. John Wiley & Sons, New York, 1995.Google Scholar
  30. 30.
    Albert I. King, King H. Yang, and Tom Khalil. WSU Brain Injury Model, http://ttb.eng.wayne.edu/brain/.
  31. 31.
    C. Kramer, W. Rogers, T. Theobald, T. Power, S. Petruolo, and N. Reichek. Remote noninfarcted regional dysfunction soon after first anterior myocardial infarction: A magnetic resonance tagging study. Circulation, 94(10):660–666, 1996.CrossRefGoogle Scholar
  32. 32.
    N. Lin and J.S. Duncan. Generalized robust point matching using an extended free-form deformation model: Application to cardiac images. In International Symposium on Biomedical Imaging, 2004.Google Scholar
  33. 33.
    Karen E. Lunn, Keith D. Paulsen, Daniel R. Lynch, David W. Roberts, Francis E. Kennedy, and Alex Hartov. Assimilating intraoperative data with brain shift modeling using the adjoint equations. Medical Image Analysis, 9(3):281–293, June 2005.CrossRefGoogle Scholar
  34. 34.
    M. Machacek, M. Sauter, and T. R¨osgen. Two-step calibration of a stereo camera system for measurements in large volumes. Measurements in Science and Technology, 14:1631–1639, 2003.Google Scholar
  35. 35.
    J. Marcus, M. Gotte, A. V. Rossum, J. Kuijer, R. Heethaar, L. Axel, and C. Visser. Myocardial function in infarcted and remote regions early after infarction in man: Assessment by magnetic resonance tagging and strain analysis. Magnetic Resonance in Medicine, 38:803–810, 1997.CrossRefGoogle Scholar
  36. 36.
    Elliott Mendelson. Introducing Game Theory and Its Applications. Chapman & Hall/CRC, Boca Raton, 2004.zbMATHGoogle Scholar
  37. 37.
    J. Meunier. Tissue motion assessment from 3d echographic speckle tracking. PHYSICS IN MEDICINE AND BIOLOGY, 43(5):1241–1254, 1998.CrossRefGoogle Scholar
  38. 38.
    F.G. Meyer, R.T. Constable, A.G. Sinusas, and J.S. Duncan. Tracking myocardial deformation using spatially constrained velocities. Information Processing in Medical Imaging, pages 26–30, 1995.Google Scholar
  39. 39.
    Michael I. Miga, Tuhin K. Sinha, David M. Cash, Robert L. Galloway, and Robert J. Weil. Cortical surface registration for image-guided neurosurgery using laser-range scanning. IEEE Transactions on Medical Imaging, 22(8):973–985, August 2003.CrossRefGoogle Scholar
  40. 40.
    X Papademetris. Estimation of 3D Left Ventricular Deformation from Medical Images Using Biomechanical Models. PhD thesis, Department of Electrical Engineering, Yale University, 2000.Google Scholar
  41. 41.
    X. Papademetris, A. J. Sinusas, D. P. Dione, R. T. Constable, and J. S. Duncan. Estimation of 3D left ventricular deformation from medical images using biomechanical models. IEEE Trans. Med. Imag., 21(7), July 2002.Google Scholar
  42. 42.
    X. Papademetris, A.J. Sinusas, D.P. Dione, R.T. Constable, and J.S. Duncan. Estimation of 3-D left ventricular deformation from medical images using biomechanical models. IEEE TMI, 21(7):786–800, 2002.Google Scholar
  43. 43.
    Terry Peters, Bruce Davey, Patrice Munger, Roch Comeau, Alan Evans, and Andr´e Olivier. Three-Dimensional multimodal image-guidance for neurosurgery. IEEE Transactions on Biomedical Engineering, 15(2):121–128, April 1996.Google Scholar
  44. 44.
    Ingerid Reinertsen, Maxime Descoteaux, Simon Drouin, Kaleem Siddiqi, and D. Louis Collins. Vessel driven correction of brain shift. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 3217, pages 208–216, Saint-Malo, France, September 26-29 2004.Google Scholar
  45. 45.
    David W. Roberts, Alexander Hartov, Francis E. Kennedy, Michael I. Miga, and Keith D. Paulsen. Intraoperative brain shift and deformation: A quantitative analysis of cortical displacement in 28 cases. Neurosurgery, 43(4):749–758, October 1998.CrossRefGoogle Scholar
  46. 46.
    Tuhin K. Sinha, Benoit D. Dawant, Valerie Duay, David M. Cash, Robert J. Weil, Reid C. Thompson, Kyle D. Weaver, and Michael I. Miga. A method to track Medical Imaging, 24(6):767–781, June 2005.Google Scholar
  47. 47.
    Oskar Škrinjar, Arya Nabavi, and James S. Duncan. Model-driven brain shift compensation. Medical Image Analysis, 6(4):361–373, December 2002.CrossRefGoogle Scholar
  48. 48.
    S. Song and R. Leahy. Computation of 3D velocity fields from 3D cine CT images. IEEE TMI, 10:295–306, 1991.Google Scholar
  49. 49.
    Grzegorz Soza, Roberto Grosso, Christopher Nimsky, Guenther Greiner, and Peter Hastreiter. Estimating mechanical brain tissue properties with simulation and registration. In Medical Image Computing and Computer-Assisted Intervention (MIC-CAI), volume 3217, pages 276–283, Saint-Malo, France, September 26-29 2004.Google Scholar
  50. 50.
    Rik Stokking. Integrated Visualizaton of Functional and Anatomical Brain Images. PhD thesis, University Utrecht, February 1998.Google Scholar
  51. 51.
    Hai Sun, Karen E. Lunn, Hany Farid, Ziji Wu, David W. Roberts, Alex Hartov, and Keith D. Paulsen. Stereopsis-guided brain shift compensation. IEEE Transactions on Medical Imaging, 24(8):1039–1052, 2005.CrossRefGoogle Scholar
  52. 52.
    Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1998.Google Scholar
  53. 53.
    P. Yan, A.J. Sinusas, and J.S. Duncan. Boundary element method-based regularization for recovering of lv deformation. Medical Image Analysis, 11(6):540–554, 2007.CrossRefGoogle Scholar
  54. 54.
    A. A. Young, D. L. Kraitchman, L. Dougherty, and L. Axel. Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Transactions on Medical Imaging, 14(3):413–421, 1995.CrossRefGoogle Scholar
  55. 55.
    Y. Zhu, M. Drangova, and N.J. Pelc. Estimation of deformation gradient and strain from cine-pc velocity data. IEEE Transactions on Medical Imaging, 16(6):840–851, 1997.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • P. Yang
    • 1
  • C. Delorenzo
    • 1
  • X. Papademetris
    • 2
  • J. S. Duncan
    • 1
  1. 1.Center for Understanding Biology using Imaging Technology (CUBIT)Stony Brook UniversityStony BrookUSA
  2. 2.Department of Diagnostic Radiology and Biomedical EngineeringYale UniversityNew HavenUSA

Personalised recommendations