Advertisement

Image registration using mutual information

  • F. Maes
  • D. Loeckx
  • D. Vandermeulen
  • P. Suetens

Abstract

Different imaging modalities, such as CT, MRI and PET, are based on different physical principles and capture different and often complementary information. Many applications in clinical practice benefit from an integrated visualization and combined analysis of such multimodal images. In many applications it is also necessary to compare images acquired at a different time points, such as in the analysis of dynamic image sequences or of follow-up studies. Analysis of a single scene from multiple images assumes that the geometrical correspondence or registration between these images is known, such that anatomically identical points can be precisely identified and compared in each of the images. But reliable automated retrospective fusion or registration of multimodality images based on intrinsic image features is complicated by their different photometric properties, by the complexity of the scene and by the large variety of clinical applications. Maximization of mutual information of corresponding voxel intensities allows for fully automated registration of multimodality images without need for segmentation or user intervention, which makes it well suited for routine clinical use in a variety of applications.

Keywords

Mutual Information Image Registration Registration Criterion Voxel Intensity Joint Histogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Chen and P. Varshney. Mutual information-based CT-MR brain image registration using generalized partial volume joint histogram estimation. IEEE Transactions on Medical Imaging, 22(9):1111–1119, 2003.CrossRefGoogle Scholar
  2. 2.
    A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal. Automated multimodality medical image registration using information theory. In Y. Bizais, C. Barillot, and R. D. Paola, editors, Proceedings of the XIV’th Int’l Conf. Information Processing in Medical Imaging (IPMI’95), volume 3 of Computational Imaging and Vision, pages 263–274, Ile de Berder, France, June 1995. Kluwer Academic Plublishers.Google Scholar
  3. 3.
    A. Collignon, D. Vandermeulen, P. Suetens, and G. Marchal. 3-D multi-modality medical image registration using feature space clustering. In N. Ayache, editor, Proc. First Int’l Conf. Computer Vision, Virtual Reality and Robotics in Medicine (CVRMED’95), volume 905 of Lecture Notes in Computer Science, pages 195–204, Nice, France, April 1995. Springer.Google Scholar
  4. 4.
    T. Cover and J. Thomas. Elements of Information Theory. John Wiley & Sons, New York, N.Y., USA, 1991.CrossRefzbMATHGoogle Scholar
  5. 5.
    E. D’Agostino, F. Maes, D. Vandermeulen, and P. Suetens. A viscous fluid model for multimodal non-rigid image registration using mutual information. Medical Image Analysis, 7(4):565–575, 2003.CrossRefGoogle Scholar
  6. 6.
    E. D’Agostino, F. Maes, D. Vandermeulen, and P. Suetens. An information theoretic approach for non-rigid image registration using voxel class probabilities. Medical Image Analysis, 10(3):413–431, 2006.CrossRefGoogle Scholar
  7. 7.
    G. Hermosillo, C. Chef d’Hotel, and O. Faugeras. Variational methods for multimodal image matching. International Journal of Computer Vision, 50(3):329–343, 2002.CrossRefzbMATHGoogle Scholar
  8. 8.
    D. Hill, D. Hawkes, N. Harrison, and C. Ruff. A strategy for automated multimodality image registration incorporating anatomical knowledge and imager characteristics. In H. Barrett and A. Gmitro, editors, Proc. XIII’th Int’l Conf. Information Processing in Medical Imaging (IPMI’93), volume 687 of Lecture Notes in Computer Science, pages 182–196, Flagstaff, Arizona, USA, June 1993. Springer-Verlag.Google Scholar
  9. 9.
    D. Hill, C. Studholme, and D. Hawkes. Voxel similarity measures for automated image registration. In Visualization in Biomedical Computing (VBC’94), volume 2359 of Proc. SPIE, pages 205–216, 1994.Google Scholar
  10. 10.
    M. Holden, D. Hill, E. Denton, J. Jarosz, T. Cox, T. Rohlfing, J. Goodey, and D. Hawkes. Voxel similarity measures for 3-D serial MR brain image registration. IEEE Transactions on Medical Imaging, 19(7):94–102, 2000.CrossRefGoogle Scholar
  11. 11.
    M. Jenkinson and S. Smith. A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5:143–156, 2001.CrossRefGoogle Scholar
  12. 12.
    J.M. Fitzpatrick, Principal Investigator. Retrospective Image Registration Evaluation, National Institutes of Health, Project Number 1 R01 CA89323, Vanderbilt University, Nashville, TN, 1994. See: http://www.vuse.vanderbilt.edu/~image/registration/.
  13. 13.
    B. Kim, J. Boes, and C. Meyer. Mutual information for automated multimodal image warping. NeuroImage, 3(3):158, June 1996. Second International Conference on Functional Mapping of the Human Brain.Google Scholar
  14. 14.
    S. Klein, M. Staring, K. Murphy, M. Viergever, and J. Pluim. elastix: a toolbox for intensity based medical image registration. IEEE Transactions on Medical Imaging, 29(1):196–205, 2010.Google Scholar
  15. 15.
    S. Klein, M. Staring, and J. Pluim. Evaluation of optimization methods for nonrigid medical image registration using mutual information and b-splines. IEEE Transactions on Image Processing, 16(12):2879–2890, 2007.CrossRefMathSciNetGoogle Scholar
  16. 16.
    B. Likar and F. Pernuš. A hierarchical approach to elastic registration based on mutual information. Image and Vision Computing, 19(1–2):33–44, 2001.CrossRefGoogle Scholar
  17. 17.
    D. Loeckx, P. Slagmolen, F. Maes, D. Vandermeulen, and P. Suetens. Nonrigid image registration using conditional mutual information. IEEE Transactions on Medical Imaging, 29(1):19–29, 2010.CrossRefGoogle Scholar
  18. 18.
    F. Maes. Segmentation and Registration of Multimodal Medical Images: from Theory, Implementation and Validation to a Useful Tool in Clinical Practice. PhD thesis, KU Leuven, Dept. Electrical Engineering (ESAT/PSI), Leuven, Belgium, May 1998.Google Scholar
  19. 19.
    F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multi-modality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16(2):187–198, 1997.CrossRefGoogle Scholar
  20. 20.
    F. Maes, D. Vandermeulen, and P. Suetens. Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information. Medical Image Analysis, 3(4):373–386, 1999.CrossRefGoogle Scholar
  21. 21.
    F. Maes, D. Vandermeulen, and P. Suetens. Medical image registration using mutual information. Proceedings of the IEEE, 91(10):1699–1722, 2003.CrossRefGoogle Scholar
  22. 22.
    J. Maintz. Retrospective Registration of Tomographic Brain Images. PhD thesis, Universiteit Utrecht, Utrecht, The Netherlands, 1996.Google Scholar
  23. 23.
    D. Mattes, D. Haynor, H. Vesselle, T. Lewellen, and W. Eubank. Pet-ct image registration in the chest using free-form deformations. IEEE Transactions on Medical Imaging, 22(1):120–128, 2003.CrossRefGoogle Scholar
  24. 24.
    C. Meyer, J. Boes, B. Kim, P. Bland, R. Wahl, K. Zasadny, P. Kison, K. Koral, and K. Frey. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin plate spline warped geometric deformations. Medical Image Analysis, 1(3):195–206, 1997.CrossRefGoogle Scholar
  25. 25.
    J. Pluim. Multi-modality matching using mutual information. Master’s thesis, University of Groningen, Department of Computing Science, Groningen, The Netherlands, November 1996.Google Scholar
  26. 26.
    J. Pluim. Mutual information based registration of medical images. PhD thesis, Utrecht University, Utrecht, The Netherlands, 2001.Google Scholar
  27. 27.
    J. Pluim, J. Maintz, and M. Viergever. Image registration by maximization of combined mutual information and gradient information. IEEE Transactions on Medical Imaging, 19(8):809–814, 2000.CrossRefGoogle Scholar
  28. 28.
    J. Pluim, J. Maintz, and M. Viergever. Interpolation artefacts in mutual information-based image registration. Computer Vision and Image Understanding, 77(2):211–232, 2000.CrossRefGoogle Scholar
  29. 29.
    J. Pluim, J. Maintz, and M. Viergever. Mutual information matching in multiresolution contexts. Image and Vision Computing, 19(1-2):45–52, 2001.CrossRefGoogle Scholar
  30. 30.
    J. Pluim, J. Maintz, and M. Viergever. Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging, 22(8):986–1004, 2003.CrossRefGoogle Scholar
  31. 31.
    J. Pluim, J. Maintz, and M. Viergever. f-information measures in medical image registration. IEEE Transactions on Medical Imaging, 23(12):1508–1516, 2004.Google Scholar
  32. 32.
    D. Rueckert, M. Clarkson, D. Hill, and D. Hawkes. Non-rigid registration using higher order mutual information. In K.M.Hanson, editor, Medical Imaging: Image Processing, volume 3979 of Proc. SPIE, pages 438–447, San Diego, CA, USA, February 2000. SPIE Press, Bellingham, WA.Google Scholar
  33. 33.
    D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999.CrossRefGoogle Scholar
  34. 34.
    D. Skerl, B. Likar, and J. Fitzpatrick. Comparative evaluation of similarity measures for the rigid registration of multi-modal head images. Physics in Medicine and Biology, 52(18): 5587–5601, 2007.CrossRefGoogle Scholar
  35. 35.
    C. Studholme, D. Hill, and D. Hawkes. Multiresolution voxel similarity measures for MR-PET registration. In Y. Bizais, C. Barillot, and R. D. Paola, editors, Proceedings of the XIV’th Int’l Conf. Information Processing in Medical Imaging (IPMI’95), volume 3 of Computational Imaging and Vision, pages 287–298, Ile de Berder, France, June 1995. Kluwer Academic Plublishers.Google Scholar
  36. 36.
    C. Studholme, D. Hill, and D. Hawkes. Automated 3-D registration of MR and CT images of the head. Medical Image Analysis, 1(2):163–175, 1996.CrossRefGoogle Scholar
  37. 37.
    C. Studholme, D. Hill, and D. Hawkes. Incorporating connected region labelling into automated image registration using mutual information. In Proc. 2’nd IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pages 23–31, San Francisco, CA, USA, June 1996. IEEE Computer Society Press.Google Scholar
  38. 38.
    C. Studholme, D. Hill, and D. Hawkes. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition, 32(1):71–86, 1999.CrossRefGoogle Scholar
  39. 39.
    P. Thévenaz and M. Unser. Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing, 9(12):2083–2099, 2000.CrossRefzbMATHGoogle Scholar
  40. 40.
    J. Tsao. Interpolation artifacts in multimodality image registration based on maximization of mutual information. IEEE Transactions on Medical Imaging, 22(7):854–864, 2003.CrossRefMathSciNetGoogle Scholar
  41. 41.
    J. Vansteenkiste, S. Stroobants, P. Dupont, P. De Leyn, W. De Wever, E. Verbeken, J. Nuyts, F. Maes, J. Bogaert, and the Leuven Lung Cancer Group. FDG-PET scan in potentially operable non-small cell lung cancer: do anatometabolic PET-CT fusion images improve the localisation of regional lymph node metastases? European Journal of Nuclear Medicine, 25(11):1495–1501, 1998.Google Scholar
  42. 42.
    P. Viola and W. Wells, III. Alignment by maximization of mutual information. In Proc. of the Fifth International Conference on Computer Vision, pages 16–23, Cambridge, MA, USA, June 1995.Google Scholar
  43. 43.
    W. Wells, III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-modal volume registration by maximization of mutual information. Medical Image Analysis, 1(1):35–51, 1996.CrossRefGoogle Scholar
  44. 44.
    J. West, J. Fitzpatrick, M. Wang, B. Dawant, C. Maurer, Jr., R. Kessler, and R. Maciunas. Retrospective intermodality registration techniques for images of the head: surface-based versus volume-based. IEEE Transactions on Medical Imaging, 18(2):144–150, 1999.CrossRefGoogle Scholar
  45. 45.
    J. West, J. Fitzpatrick, M. Wang, B. Dawant, C. Maurer, Jr., R. Kessler, R. Maciunas, C. Barillot, D. Lemoine, A. Collignon, F. Maes, P. Suetens, D. Vandermeulen, P. van den Elsen, P. . Hemler, S. Napel, T. Sumanaweera, B. Harkness, D. Hill, C. Studholme, G. Malandain, X. Pennec, M. Noz, G. Maguire, Jr., M. Pollack, C. Pellizari, R. Robb, D. Hanson, and R. Woods. Comparison and evaluation of retrospective intermodality brain image registration techniques. In Medical Imaging: Image Processing, volume 2710 of Proc. SPIE, pages 332–347, Newport Beach, California, USA, February 1996.Google Scholar
  46. 46.
    J. West, J. Fitzpatrick, M. Wang, B. Dawant, C. Maurer, Jr., R. Kessler, R. Maciunas, C. Barillot, D. Lemoine, A. Collignon, F. Maes, P. Suetens, D. Vandermeulen, P. van den Elsen, S. Napel, T. Sumanaweera, B. Harkness, P. Hemler, D. Hill, D. Hawkes, C. Studholme, J. Maintz, M. Viergever, G. Malandain, X. Pennec, M. Noz, G. Maguire, Jr., M. Pollack, C. Pellizari, R. Robb, D. Hanson, and R. Woods. Comparison and evaluation of retrospective intermodality brain image registration techniques. Journal of Computer Assisted Tomography, 21:554–566, 1997.CrossRefGoogle Scholar
  47. 47.
    R. Woods, J. Mazziotta, and S. Cherry. MRI-PET registration with automated algorithm. Journal of Computer Assisted Tomography, 17(4):536–546, 1993.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • F. Maes
    • 1
  • D. Loeckx
    • 1
  • D. Vandermeulen
    • 1
  • P. Suetens
    • 1
  1. 1.ESAT/PSI-Medical Image Computing & iMindsKU LeuvenLeuvenBelgium

Personalised recommendations