Non-rigid registration using free-form deformations

  • D. RueckertEmail author
  • P. Aljabar


Free-form deformations are a powerful geometric modeling technique which can be used to represent complex 3D deformations. In recent years, free-form deformations have gained significant popularity in algorithms for the non-rigid registration of medical images. In this chapter we show how free-form deformations can be used in non-rigid registration to model complex local deformations of 3D organs. In particular, we discuss diffeomorphic and non-diffeomorphic representations of 3D deformation fields using free-form deformations as well as different penalty functions that can be used to constrain the deformation fields during the registration. We also show how free-form deformations can be used in combination with mutual information-based similarity metrics for the registration of mono-modal and multi-modal medical images. Finally, we discuss applications of registration techniques based on free-form deformations for the analysis of images of the breast, heart and brain as well as for segmentation and shape modelling.


Mutual Information Control Point Penalty Function Image Registration Query Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Aljabar, K. Bhatia, M. Murgasova, J. Hajnal, J. Boardman, L. Srinivasan, M. Rutherford, L. Dyet, A. Edwards, and D. Rueckert. Assessment of brain growth in early childhood using deformation based morphometry. NeuroImage, 39(1):348–358, 2008.CrossRefGoogle Scholar
  2. 2.
    L. Axel and L. Dougherty. Heart wall motion: Improved method of spatial modulation of magnetization for MR imaging. Radiology, 172(2):349–350, 1989.CrossRefGoogle Scholar
  3. 3.
    R. Bajcsy and S. Kovačič. Multiresolution elastic matching. Computer Vision, Graphics and Image Processing, 46:1–21, 1989.Google Scholar
  4. 4.
    M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2):139–157, 2005.CrossRefGoogle Scholar
  5. 5.
    J. P. Boardman, K. Bhatia, S. Counsell, J. Allsop, O. Kapellou, M. A. Rutherford, A. D. Edwards, J. V. Hajnal, and D. Rueckert. An evaluation of deformation-based morphometry in the developing human brain and detection of volumetric changes associated with preterm birth. In Sixth Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI ’03), Lecture Notes in Computer Science, 2003.Google Scholar
  6. 6.
    F. L. Bookstein. Principal Warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, 1989.CrossRefzbMATHGoogle Scholar
  7. 7.
    R. Boyes, D. Rueckert, P. Aljabar, J. Whitwell, J. Schott, D. Hill, and N. Fox. Cerebral atrophy measurements using jacobian integration: Comparison with the boundary shift integral. NeuroImage, 32(1):159–169, 2006.CrossRefGoogle Scholar
  8. 8.
    M. Bro-Nielsen and C. Gramkow. Fast fluid registration of medical images. In Proc. 4th International Conference Visualization in Biomedical Computing (VBC’96), pages 267–276, 1996.Google Scholar
  9. 9.
    V. Cardenas, C. Studholme, S. Gazdzinski, T. Durazzo, and D. Meyerhoff. Deformation-based morphometry of brain changes in alcohol dependence and abstinence. NeuroImage, 34(3): 879–887, 2006.CrossRefGoogle Scholar
  10. 10.
    R. Chandrashekara, R. Mohiaddin, R. Razavi, and D. Rueckert. Nonrigid image registration with subdivision lattices: Application to cardiac MR image analysis. In Tenth Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI ’07), pages 335–342, 2007.Google Scholar
  11. 11.
    R. Chandrashekara, R. Mohiaddin, and D. Rueckert. Analysis of myocardial motion and strain patterns using a cylindrical B-spline transformation model. In Surgery Simulation and Soft Tissue Modelling (IS4TM 03), pages 88–99, 2003.Google Scholar
  12. 12.
    R. Chandrashekara, R. H. Mohiaddin, and D. Rueckert. Analysis of myocardial motion in tagged MR images using non-rigid image registration. In Proc. SPIE Medical Imaging 2002: Image Processing, pages 1168–1179, San Diego, CA, Feb. 2002.Google Scholar
  13. 13.
    Y. Choi and S. Lee. Injectivity conditions of 2D and 3D uniform cubic B-spline functions. Graphical Models, 62(6):411–427, 2000.CrossRefzbMATHGoogle Scholar
  14. 14.
    G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 5(10):1435–1447, 1996.CrossRefGoogle Scholar
  15. 15.
    G. E. Christensen, R. D. Rabbitt, M. I. Miller, S. C. Joshi, U. Grenander, T. A. Coogan, and D. C. van Essen. Topological properties of smooth anatomic maps. In Information Processing in Medical Imaging: Proc. 14th International Conference (IPMI’95), pages 101–112, 1995.Google Scholar
  16. 16.
    A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Seutens, and G. Marchal. Automated multimodality image registration using information theory. In Information Processing in Medical Imaging: Proc. 14th International Conference (IPMI’95), pages 263–274, 1995.Google Scholar
  17. 17.
    T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor. A unified framework for atlas matching using active appearance models. In Information Processing in Medical Imaging: Proc. 16th International Conference (IPMI’99), pages 322–333, 1999.Google Scholar
  18. 18.
    T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active Shape Models - their training and application. Computer Vision and Image Understanding, 61(1):38–59, 1995.CrossRefGoogle Scholar
  19. 19.
    S. Coquillart. Extended free-form deformation: A sculpturing tool for 3D geometric modelling. Computer Graphics, 24(4):187–196, 1986.CrossRefGoogle Scholar
  20. 20.
    C. Davatzikos. Spatial transformation and registration of brain images using elastically deformable models. Computer Vision and Image Understanding, 66(2):207–222, 1997.CrossRefGoogle Scholar
  21. 21.
    R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J. Taylor. 3D statistical shape models using direct optimization of description length. In Proc. 7th European Conference on Computer Vision (ECCV’02), pages 3–20, 2002.Google Scholar
  22. 22.
    R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J. Taylor. A minimum description length approach to statistical shape modeling. IEEE Transactions on Medical Imaging, 21(5):525–537, 2002.CrossRefGoogle Scholar
  23. 23.
    M. H. Davis, A. Khotanzad, D. P. Flamig, and S. E. Harms. A physics-based coordinate transformation for 3-D image matching. IEEE Transactions on Medical Imaging, 16(3): 317–328, 1997.CrossRefGoogle Scholar
  24. 24.
    E. R. E. Denton, L. I. Sonoda, D. Rueckert, S. C. Rankin, C. Hayes, M. Leach, D. L. G. Hill, and D. J. Hawkes. Comparison and evaluation of rigid and non-rigid registration of breast MR images. Journal of Computer Assisted Tomography, 23:800–805, 1999.CrossRefGoogle Scholar
  25. 25.
    P. J. Edwards, D. L. G. Hill, J. A. Little, and D. J. Hawkes. A three-component deformation model for image-guided surgery. Medical Image Analysis, 2(4):355–367, 1998.CrossRefGoogle Scholar
  26. 26.
    D. R. Forsey and R. H. Bartels. Hierarchical B-spline refinement. ACM Transactions on Computer Graphics, 22(4):205–212, 1988.CrossRefGoogle Scholar
  27. 27.
    A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen. Automatic 3D ASM construction via atlas-based landmarking and volumetric elastic registration. In Information Processing in Medical Imaging: Proc. 17th International Conference (IPMI’01), Lecture Notes in Computer Science, pages 78–91, Davis, CA, July 2001. Springer-Verlag.Google Scholar
  28. 28.
    A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen. Automatic construction of multiple-object three-dimensional statistical shape models: Application to cardiac modeling. IEEE Transactions on Medical Imaging, 21(9):1151–1166, 2002.CrossRefGoogle Scholar
  29. 29.
    J. C. Gee. On matching brain volumes. Pattern Recognition, 32(1):99–111, 1999.CrossRefMathSciNetGoogle Scholar
  30. 30.
    M. Hagenlocker and K. Fujimura. CFFD: a tool for designing flexible shapes. The Visual Computer, 14(5/6):271–287, 1998.CrossRefGoogle Scholar
  31. 31.
    J. V. Hajnal, D. L. G. Hill, and D. J. Hawkes, editors. Medical Image Registration. CRC Press, 2001.Google Scholar
  32. 32.
    R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers. Automatic anatomical brain mri segmentation combining label propagation and decision fusion. Neuroimage, 33(1):115–126, 2006.CrossRefGoogle Scholar
  33. 33.
    P. Hellier, C. Barillot, É. Mémin, and P. Perex. Hierarchical estimation of a dense deformation field for 3D robust registration. IEEE Transactions on Medical Imaging, 20(5):388–402, 2001.CrossRefGoogle Scholar
  34. 34.
    A. Kelemen, G. Székely, and G. Gerig. Elastic model-based segmentation of 3-D neurological data sets. IEEE Transactions on Medical Imaging, 18(10):828–839, 1999.CrossRefGoogle Scholar
  35. 35.
    S. Klein, M. Staring, and J. Pluim. Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Transactions on Image Processing, 16(12):2879–2890, December 2007.CrossRefMathSciNetGoogle Scholar
  36. 36.
    J. Kybic and M. Unser. Fast parametric elastic image registration. IEEE Transactions on Image Processing, 12(11):1427–1442, 2003.CrossRefGoogle Scholar
  37. 37.
    S. Lee, G. Wolberg, K.-Y. Chwa, and S. Y. Shin. Image metamorphosis with scattered feature constraints. IEEE Transactions on Visualization and Computer Graphics, 2(4):337–354, 1996.CrossRefGoogle Scholar
  38. 38.
    S. Lee, G. Wolberg, and S. Y. Shin. Scattered data interpolation with multilevel B-splines. IEEE Transactions on Visualization and Computer Graphics, 3(3):228–244, 1997.CrossRefGoogle Scholar
  39. 39.
    M. E. Leventon, W. E. L. Grimson, and O. Faugeras. Statistical shape influence in geodesic active contours. In Proc. Conference on Computer Vision and Pattern Recognition (CVPR’00), pages 316–323, 2000.Google Scholar
  40. 40.
    N. Lin and J. S. Duncan. Generalized robust point matching using an extended free-form deformation model: Application to cardiac images. In IEEE International Symposium on Biomedical Imaging, 2004.Google Scholar
  41. 41.
    D. Loeckx, F. Maes, D. Vandermeulen, and P. Suetens. Nonrigid image registration using free-form deformations with a local rigidity constraint. In Seventh Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI ’04), pages 639–646, 2004.Google Scholar
  42. 42.
    R. MacCracken and K. I. Joy. Free-form deformations with lattices of arbitrary topology. In SIGGRAPH, pages 181–188, 1996.Google Scholar
  43. 43.
    F. Maes, A. Collignon, D. Vandermeulen, G. Marechal, and R. Suetens. Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16(2):187–198, 1997.CrossRefGoogle Scholar
  44. 44.
    J. B. A. Maintz and M. A. Viergever. A survey of medical image registration. Medical Image Analysis, 2(1):1–36, 1998.CrossRefGoogle Scholar
  45. 45.
    D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank. PET–CT image registration in the chest using free-form deformations. IEEE Transactions on Medical Imaging, 22(1):120–128, 2003.CrossRefGoogle Scholar
  46. 46.
    K. McLeish, D. L. G. Hill, D. Atkinson, J. M. Blackall, and R. Razavi. A study of the motion and deformation of the heart due to respiration. IEEE Transactions on Medical Imaging, 21(9):1142–1150, 2002.CrossRefGoogle Scholar
  47. 47.
    H. Ólafsdóttir, M. B. Stegmann, B. K. Ersbøll, and H. B. Larsson. A comparison of FFD-based nonrigid registration and AAMs applied to myocardial perfusion MRI. In International Symposium on Medical Imaging 2006, San Diego, CA, volume 6144, 2006.Google Scholar
  48. 48.
    J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging, 22:986–1004, 2003.CrossRefGoogle Scholar
  49. 49.
    T. Rohlfing, R. Brandt, R. Menzel, and C. M. Jr. Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage, 21(4):1428–1442, 2004.CrossRefGoogle Scholar
  50. 50.
    T. Rohlfing and J. C. R. Maurer. Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Transactions on Information Technology in Biomedicine, 7(1):16–25, 2003.CrossRefGoogle Scholar
  51. 51.
    T. Rohlfing, J. C. R. Maurer, D. A. Bluemke, and M. A. Jacobs. Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Transactions on Medical Imaging, 22(6):730–741, 2003.CrossRefGoogle Scholar
  52. 52.
    T. Rohlfing, E. Sullivan, and A. Pfefferbaum. Deformation-based brain morphometry to track the course of alcoholism: Differences between intra-subject and inter-subject analysis. Psychiatry Research: Neuroimaging, 146(2):157–170, 2006.CrossRefGoogle Scholar
  53. 53.
    D. Rueckert, C. Hayes, C. Studholme, P. Summers, M. Leach, and D. J. Hawkes. Non-rigid registration of breast MR images using mutual information. In First Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI ’98), Lecture Notes in Computer Science, pages 1144–1152, Cambridge, MA, 1998. Springer-Verlag.Google Scholar
  54. 54.
    D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999.CrossRefGoogle Scholar
  55. 55.
    J. A. Schnabel, D. Rueckert, M. Quist, J. M. Blackall, A. D. C. Smith, T. Hartkens, G. P. Penney, W. A. Hall, H. Liu, C. L. Truwit, F. A. Gerritsen, D. L. G. Hill, and D. J. Hawkes. A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In Fourth Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI ’01), Lecture Notes in Computer Science, pages 573–581, Utrecht, NL, Oct. 2001. Springer-Verlag.Google Scholar
  56. 56.
    J. A. Schnabel, C. Tanner, A. D. Castellano-Smith, A. Degenhard, M. O. Leach, D. R. Hose, D. L. G. Hill, and D. J. Hawkes. Validation of non-rigid image registration using finite element methods: Application to breast MR images. IEEE Transactions on Medical Imaging, 22(2):238–247, 2003.CrossRefGoogle Scholar
  57. 57.
    T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric models. SIGGRAPH, 20(4):151–160, 1986.CrossRefGoogle Scholar
  58. 58.
    D. Shen and C. Davatzikos. Hammer: Hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21(11):1421–1439, 2002.CrossRefGoogle Scholar
  59. 59.
    C. Studholme, V. Cardenas, R. Blumenfeld, N. Schuff, H. Rosen, B. Miller, and M. Weiner. A deformation tensor morphometry study of semantic dementia with quantitative validation. NeuroImage, 21(4):1387–1398, 2004.CrossRefGoogle Scholar
  60. 60.
    C. Studholme, D. L. G. Hill, and D. J. Hawkes. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition, 32(1):71–86, 1998.CrossRefGoogle Scholar
  61. 61.
    J.-P. Thirion. Image matching as a diffusion process: An analogy with Maxwell’s demons. Medical Image Analysis, 2(3):243–260, 1998.CrossRefGoogle Scholar
  62. 62.
    P. Viola. Alignment By Maximization of Mutual Information. PhD thesis, Massachusetts Institute of Technology. A.I. Technical Report No. 1548, 1995.Google Scholar
  63. 63.
    G. Wahba. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, 1990.Google Scholar
  64. 64.
    J. Wang and T. Jiang. Nonrigid registration of brain MRI using NURBS. Pattern Recognition Letters, 28(2):214–223, 2007.CrossRefGoogle Scholar
  65. 65.
    E. A. Zerhouni, D. M. Parish, W. J. Rogers, A. Yang, and E. P. Shapiro. Human heart: Tagging with MR imaging – a method for non-invasive assessment of myocardial motion. Radiology, 169:59–63, 1988.CrossRefGoogle Scholar
  66. 66.
    B. Zitova and J. Flusser. Image registration methods: a survey. Image and Vision Computing, 21(11):977–1000, 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ComputingImperial College LondonLondonUK
  2. 2.Department of Biomedical Engineering, Division of Imaging SciencesKing’s College LondonLondonUK

Personalised recommendations