Skip to main content

Monte Carlo Sampling for the Segmentation of Tubular Structures

  • Chapter

Abstract

In this paper, we present a multiple hypotheses testing for the segmentation of tubular structures in medical imaging that addresses appearance (scanner artifacts, pathologies,…) and geometric (bifurcations) non-linearities. Our method represents vessels/tubular structures as sequences of state vectors (vessel cuts/cross-sections), which are described by the position of the corresponding plane, the center of the vessel in this plane and its radius. Thus, 3D segmentation consists in finding the optimal sequence of 2D planes normal to the vessel’s centerline. This sequence of planes is modeled by a probability density function (pdf for short) which is maximized with respect to the parameters of the state vector. Such a pdf is approximated in a non-parametric way, the Particle Filter approach, that is able to express multiple hypotheses (branches). Validation using ground truth from clinical experts and very promising experimental results for the segmentation of the coronaries demonstrates the potential of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking. IEEE Trans. on Signal Process., 50:174–188, 2002.

    Article  Google Scholar 

  2. B. Avants and J. Williams. An adaptive minimal path generation technique for vessel tracking in CTA/CE-MRA volume images. In Med. Image Comput. Comput. Assist. Interv. Int. Conf., volume 3749, pages 707–716. Springer, 2000.

    Google Scholar 

  3. S. Bouix, K. Siddiqi, and A. R. Tannenbaum. Flux driven automatic centerline extraction. In Med. Image Anal., volume 9, pages 209–221(3), 2005.

    Article  Google Scholar 

  4. V. Caselles, F. Catté, B. Coll, and F. Dibos. A geometric model for active contours in image processing. Numerische Mathematik, 66(1):1–31, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Deschamps. Curve and Shape Extraction with Minimal Path and Level-Sets techniques-Applications to 3D Medical Imaging. PhD thesis, Université Paris-IX Dauphine, Place du maréchal de Lattre de Tassigny, 75775 Paris Cedex, Dec. 2001.

    Google Scholar 

  6. T. Deschamps and L. Cohen. Fast extraction of tubular and tree 3d surfaces with front propagation methods. In IARP International Conference on Pattern Recognition, volume 1, pages 731–734. IEEE Computer Society, 2002.

    Google Scholar 

  7. T. Deschamps and L. D. Cohen. Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Anal., 5(4):281–299, Dec. 2001.

    Article  Google Scholar 

  8. A. Doucet, J. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice. Springer-Verlag, New York, 2001.

    Google Scholar 

  9. A. Doucet, N. Gordon, and C. Andrieu. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering. Statistics and Computing, 10(3):197–208, 2000.

    Article  Google Scholar 

  10. R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley and Sons, 1973.

    MATH  Google Scholar 

  11. M. Figueiredo and J. Leitao. A nonsmoothing approach to the estimation of vessel contours in angiograms. IEEE Trans. Med. Imaging, 14:162–172, 1995.

    Article  Google Scholar 

  12. C. Florin, N. Paragios, and J. Williams. Particle filters, a Quasi-Monte Carlo solution for segmentation of coronaries. In Med. Image Comput. Comput. Assist. Interv. Int. Conf., pages 246–253, 2005.

    Google Scholar 

  13. C. Florin, N. Paragios, and J. Williams. Globally optimal active contours, sequential monte carlo and on-line learning for vessel segmentation. In European Conference on Computer Vision, volume 3953, pages 476–489, 2006.

    Google Scholar 

  14. A. Frangi, W. Niessen, P. Nederkoorn, O. Elgersma, and M. Viergever. Three-dimensional model-based stenosis quantification of the carotid arteries from contrast-enhanced MR angiography. In IEEE Mathematical Methods in Biomedical Image Analysis, pages 110–118, 2000.

    Google Scholar 

  15. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever. Multiscale vessel enhancement filtering. Lecture Notes in Computer Science, 1496, 1998.

    Google Scholar 

  16. N. Gordon. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation. IEEE Proceedings, 140:107–113, 1993.

    Google Scholar 

  17. M. Hart and L. Holley. A method of Automated Coronary Artery Tracking in Unsubtracted Angiograms. IEEE Comput. in Cardiol., pages 93–96, 1993.

    Google Scholar 

  18. M. Isard and A. Blake. Contour Tracking by Stochastic Propagation of Conditional Density. In European Conference on Computer Vision, volume I, pages 343–356,1996.

    Google Scholar 

  19. K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset. Model based detection of tubular structures in 3d images. Computer Vision and Image Understanding, 80:130–171, 2000.

    Article  MATH  Google Scholar 

  20. L. Lorigo, O. Faugeras, E. Grimson, R. Keriven, R. Kikinis, A. Nabavi, and C. Westin. Codimension-Two Geodesic Active Controus for the Segmentation of Tubular Structures. In IEEE Conference on Computer Vision and Pattern Recognition, pages I:444–451, 2000.

    Google Scholar 

  21. R. Malladi and J. Sethian. A Real-Time Algorithm for Medical Shape Recovery. In IEEE International Conference in Computer Vision, pages 304–310, 1998.

    Google Scholar 

  22. D. Nain, A. Yezzi, and G. Turk. Vessel Segmentation Using a Shape Driven Flow. In Med. Image Comput. Comput. Assist. Interv. Int. Conf., 1, pages 51–59. Springer, 2004.

    Google Scholar 

  23. T. O´ Donnell, T. Boult, X. Fang, and A. Gupta. The Extruded Generalized Cylider: A Deformable Model for Object Recovery. In IEEE Conference on Computer Vision and Pattern Recognition, pages 174–181, 1994.

    Google Scholar 

  24. S. Osher and N. Paragios. Geometric Level Set Methods in Imaging, Vision and Graphics. Springer Verlag, 2003.

    MATH  Google Scholar 

  25. R. Petrocelli, K. Manbeck, and J. Elion. Three Dimensional Structure Recognition in Digital Angiograms using Gauss-Markov Models. In Comput. in Radiol., pages 101–104. IEEE, 1993.

    Google Scholar 

  26. F. L. Ruberg. Computed Tomography of the Coronary Arteries. London, UK: Taylor & Francis, 2005.

    Book  Google Scholar 

  27. D. Rueckert, P. Burger, S. Forbat, R. Mohiadin, and G. Yang. Automatic Tracking of the Aorta in Cardiovascular MR images using Deformable Models. IEEE Trans. Med. Imaging, 16: 581–590, 1997.

    Article  Google Scholar 

  28. J. Sethian. A Review of the Theory, Algorithms, and Applications of Level Set Methods for Propagating Interfaces. Cambridge University Press, pages 487–499, 1995.

    Google Scholar 

  29. J. Sethian. Level Set Methods. Cambridge University Press, 1996.

    MATH  Google Scholar 

  30. M. Sofka and C. V. Stewart. Retinal vessel extraction using multiscale matched filters, confidence and edge measures. IEEE Trans. Med. Imaging, 25(12):1531–1546, 2006.

    Article  Google Scholar 

  31. E. Sorantin, C. Halmai, B. Erbohelyi, K. Palagyi, K. Nyul, K. Olle, B. Geiger, F. Lindbichler, G. Friedrich, and K. Kiesler. Spiral-CT-based assessment of Tracheal Stenoses using 3D Skeletonization. IEEE Trans. Med. Imaging, 21:263–273, 2002.

    Article  Google Scholar 

  32. K. Toyama and A. Blake. Probabilistic Tracking in a Metric Space. In IEEE International Conference in Computer Vision, pages 50–59, 2001.

    Google Scholar 

  33. J. Tsitsiklis. Efficient Algorithms for Globally Optimal Trajectories. IEEE Transactions on Automatic Control, 40:1528–1538, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  34. W. West. Modeling with mixtures. In J. Bernardo, J. Berger, A. Dawid, and A. Smith, editors, Bayesian Statistics 4. Clarendon Press, 1993.

    Google Scholar 

  35. O. Wink, W. J. Niessen, and M. A. Viergever. Multiscale vessel tracking. IEEE Trans. Med. Imaging, 23(1):130–133, 2004.

    Article  Google Scholar 

  36. S. Y., N. S., S. N., A. H., Y. S., K. T., G. G., and K. R. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal., 2:143–168(26), 1998.

    Google Scholar 

  37. P. Yim, P. Choyke, and R. Summers. Grayscale Skeletonization of Small Vessels in Magnetic Resonance Angiography. IEEE Trans. Med. Imaging, 19:568–576, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Florin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Florin, C., Paragios, N., Williams, J. (2015). Monte Carlo Sampling for the Segmentation of Tubular Structures. In: Paragios, N., Duncan, J., Ayache, N. (eds) Handbook of Biomedical Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09749-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09749-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09748-0

  • Online ISBN: 978-0-387-09749-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics