Integration of Topological Constraints in Medical Image Segmentation

  • F. SégonneEmail author
  • B. Fischl


Topology is a strong global constraint that can be useful in generating geometrically accurate segmentations of anatomical structures. Conversely, topological “defects” or departures from the true topology of a structure due to segmentation errors can greatly reduce the utility of anatomical models. In this chapter we cover methods for integrating topological constraints into segmentation procedures in order to generate geometrically accurate and topologically correct models, which is critical for many clinical and research applications.


Active Contour Homotopy Type Topological Defect Implicit Representation Foreground Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. Bai, X. Han, and J. Prince. Octree-based topology-preserving iso-surface simplification. In MMBIA, 2006.Google Scholar
  2. 2.
    Y. Bai, X. Han, and J. Prince. Octree grid topology preserving geometric deformable models for 3d medical image segmentation. In International Conference on Information Processing in Medical Imaging, 2007.Google Scholar
  3. 3.
    P. Bazin and P. D.L. Topology preserving tissue classification with fast marching and topology templates. International Conference on Information Processing in Medical Imaging, pages 234–245, 2005.Google Scholar
  4. 4.
    P. Bazin, L. Ellingsen, and D. Pham. Digital homeomorphisms in deformable registration. In International Conference on Information Processing in Medical Imaging, 2007.Google Scholar
  5. 5.
    P. Bazin and D. Pham. Statistical and topological atlas based brain image segmentation. In Medical Image Computing and Computer-Assisted Intervention, 2007.Google Scholar
  6. 6.
    G. Bertrand. A boolean characterization of three-dimensional simple points. Pattern Recognition Letters, 17:115–124, 1996.CrossRefGoogle Scholar
  7. 7.
    G. Bertrand and G. Malandain. A new characterization of three-dimensional simple points. Patternb Recognition Letters, 2(15):169–175, 1994.CrossRefGoogle Scholar
  8. 8.
    S. Bischoff and L. Kobbelt. Isosurface reconstruction with topology control. Pacific Graphics Proceedings, pages 246–255, 2002.Google Scholar
  9. 9.
    V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. The International Journal of Computer, 22(1):61–79, 1997.CrossRefzbMATHGoogle Scholar
  10. 10.
    G. Christense, R. Rabbitt, and M. Miller. 3d brain mapping using a deformable neuroanatomy. Phys. Med. Biol., 39:609–618, 1994.CrossRefGoogle Scholar
  11. 11.
    A. Dale, B. Fischl, and S. M.I. Cortical surface-based analysis i: Segmentation and surface reconstruction. NeuroImage, 9:179–194, 1999.Google Scholar
  12. 12.
    A. M. Dale and M. I. Sereno. Improved localization of cortical activity by combining eeg and meg with mri cortical surface reconstruction: A linear approach. Journal of Cognitive Neuroscience, 5(2):162–176, 1993.CrossRefGoogle Scholar
  13. 13.
    C. Davatzikos and R. Bryan. Using a deformable surface model to obtain a shape representation of the cortex. IEEE TMI, 15:758–795, 1996.Google Scholar
  14. 14.
    H. Delingette. General object reconstruction based on simplex meshes. The International Journal of Computer Vision, 32(2):111–146, 1999.CrossRefGoogle Scholar
  15. 15.
    H. Delingette and J. Montagnat. Shape and topology constraints on parametric active contours. Computer Vision and Image Understanding, 83(2):140–171, 2001.CrossRefzbMATHGoogle Scholar
  16. 16.
    R. Desikan, F. Ségonne, and etal. A computer generated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. Human Brain Mapping, 2005.Google Scholar
  17. 17.
    H. Drury, D. Van Essen, C. Anderson, C. Lee, T. Coogan, and J. Lewis. Computerized mappings of the cerebral cortex: A multiresolution flattening method and a surface-based coordinate system. J. Cogn. Neurosci, 8(1):1–28, 1996.CrossRefGoogle Scholar
  18. 18.
    B. Fischl and A. Dale. Measuring the thickness of the human cerebral cortex from magnetic resonnace images. Proceedings of the National Academy of Sciences, 97:11044–11049, 2000.CrossRefGoogle Scholar
  19. 19.
    B. Fischl, A. Liu, and A. Dale. Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE TMI, 20: 70–80, 2001.Google Scholar
  20. 20.
    B. Fischl, D. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. Van der Kouwe, R. Killinay, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. Dale. Whole brain segmentation: Automated labeling of neuroanatomical strucutres in the human brain. Neuron, 33:341–355, 2002.CrossRefGoogle Scholar
  21. 21.
    B. Fischl, M. Sereno, and A. Dale. Cortical surface-based analysis ii: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9:195–207, 1999.CrossRefGoogle Scholar
  22. 22.
    B. Fischl, M. Sereno, R. Tootell, and A. Dale. High-resolution inter-subject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8:272–284, 1999.CrossRefGoogle Scholar
  23. 23.
    R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky. Cortex segmentation: A fast variational geometric approach. IEEE TMI, 21(2):1544–1551, 2002.Google Scholar
  24. 24.
    I. Guskov and Z. Wood. Topological noise removal. Graphics I proceedings, pages 19–26, 2001.Google Scholar
  25. 25.
    X. Han. Anatomically Consistent Segmentation of Medical Imagery Using a Level Set Method and Digital Topology. PhD thesis, Baltimore, Maryland, October 2003.Google Scholar
  26. 26.
    X. Han, C. Xu, U. Braga-Neto, and J. Prince. Topology correction in brain cortex segmentation using a multiscale, graph-based approach. IEEE TMI, 21(2):109–121, 2001.Google Scholar
  27. 27.
    X. Han, C. Xu, and J. Prince. A 2d moving grid geometric deformable model. IEEE Conf. on Comp. Vis. Patt. Recog., pages 153–160, 2003.Google Scholar
  28. 28.
    X. Han, C. Xu, and J. Prince. A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6):755–768, 2003.CrossRefGoogle Scholar
  29. 29.
    S. Jaume. Topology Simplification Algorithm for the Segmentation of Medical Images. PhD thesis, University of Louvain (Belgium), Feb 2004.Google Scholar
  30. 30.
    B. Kara¸c and C. Davatzikos. Topology preservation and regularity in estimated deformation fields. International Conference on Information Processing in Medical Imaging, pages 426–437, 2003.Google Scholar
  31. 31.
    R. Kikinis and etal. Temporal love sulco-gyral pattern anomalies in schizophrenia: An in vivo mr three-dimensional surface rendering study. Neuroscience Letters, 182:7–12, 1994.Google Scholar
  32. 32.
    N. Kriegeskorte and R. Goeble. An efficient algorithm for topologically segmentation of the cortical sheet in anatomical mr volumes. NeuroImage, 14:329–346, 2001.CrossRefGoogle Scholar
  33. 33.
    J.-O. Lachaud and A. Montanvert. Deformable meshes with automated topology changes for coarse-to-fine 3D surface extraction. Medical Image Analysis, 3(2):187–207, 1999.CrossRefGoogle Scholar
  34. 34.
    W. Lorensen and H. Cline. Marching cubes: A high-resolution 3D surface reconstruction algorithm. ACM Computer Graphics, 21(4):163–170, 1987.CrossRefGoogle Scholar
  35. 35.
    D. MacDonald, N. Kabani, D. Avis, and A. Evens. Automated 3d extraction of inner and outer surfaces of cerebral cortex from mri. NeuroImage, 12:340–356, 2000.CrossRefGoogle Scholar
  36. 36.
    J.-F. Mangin, V. Frouin, I. Bloch, J. Regis, and J. Lopez-Krahe. From 3d magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision, 5:297–318, 1995.CrossRefGoogle Scholar
  37. 37.
    T. McInerney and D. Terzopolos. Deformable models in medical image analysis: A survey. Medical Image Analysis, 1(2):91–108, 1996.CrossRefGoogle Scholar
  38. 38.
    T. McInerney and D. Terzopolos. Deformable models in medical image analysis: A survey, 1999 update. Handbook of Medical Image Processing, 1999.Google Scholar
  39. 39.
    T. McInerney and D. Terzopoulos. T-snakes: Topology adaptive snakes. Medical Image Analysis, 4:73–91, 2000.CrossRefGoogle Scholar
  40. 40.
    S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79(1):12–49, 1988.CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    J.-P. Pons and J.-D. Boissonnat. Delaunay deformable models: Topology-adaptive meshes based on the restricted delaunay triangulation. In Conference on Computer Vision and Pattern Recognition, 2007.Google Scholar
  42. 42.
    F. Poupon, J.-F. Mangin, D. Hasboun, C. Poupon, I. Magnin, and V. Frouin. Multi-object deformable templates dedicated to the segmentation of brain deep structures. LNCS, 1496:1134–1143, 1998.Google Scholar
  43. 43.
    D. Salat, R. Buckner, A. Snyder, D. Greve, R. Desikan, E. Busa, J. Morris, A. Dale, and B. Fischl. Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7):721–730, July 2004.CrossRefGoogle Scholar
  44. 44.
    F. Ségonne. Active contours under topology control genus preserving level sets. The International Journal of Computer, 2007.Google Scholar
  45. 45.
    F. Ségonne. Segmentation of Medical Images under Topological Constraints. PhD thesis, Massachusetts Institute of Technology, December 2005.Google Scholar
  46. 46.
    F. Ségonne, E. Grimson, and B. Fischl. Topological correction of subcortical segmentation. In Proceedings of Medical Image Computing and Computer-Assited Intervention, volume 2879-2, pages 695–702, 2003.Google Scholar
  47. 47.
    F. Ségonne, E. Grimson, and B. Fischl. A genetic algorithm for the topology correction of cortical surfaces. In Proceedings of Information Processing in Medical Imaging, LNCS, volume 3565, pages 393–405, 2005.Google Scholar
  48. 48.
    F. Ségonne, J. Pacheco, and B. Fischl. A geometrically accurate topology-correction of cortical surfaces using nonseparating loops. TMI, 26(4):518–529, 2007.Google Scholar
  49. 49.
    D. Shattuck and R. Leahy. Automated graph based analysis and correction of cortical volume topology. IEEE TMI, 20(11):1167–1177, 2001.Google Scholar
  50. 50.
    J. Tanabe, D. Amend, N. Schuff, V. DiSclafani, F. Ezekiel, D. Norman, G. Fein, and M. Wiener. Tissue segmentation of the brain in alzeihmer’s disease. J. Neuroradiol., 18:115–123, 1997.Google Scholar
  51. 51.
    X. Tao, X. Han, M. Rettmann, J. Prince, and C. Davatzikos. Statistical study on cortical sulci of human brains. Proceedings of Inf. Proc. in Med. Imag., pages 37–49, 2001.Google Scholar
  52. 52.
    D. Terzopoulos, A. Witkin, and M. Kass. Constraints on Deformable Models: Recovering 3D shape and Nonrigid Motion. Artificial Intelligence, 36(1):91–123, 1988.CrossRefzbMATHGoogle Scholar
  53. 53.
    P. Thompson, D. MacDonald, M. Mega, C. Holmes, A. Evans, and A. Toga. Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. J. Comput. Assist. Tomogr., 21(4):567–581, 1998.CrossRefGoogle Scholar
  54. 54.
    P. Thompson, J. Moussai, S. Zohoori, A. Goldkorn, A. Khan, M. Mega, G. Small, J. Cummings, and A. Toga. Cortical variability and asymmetry in normal aging and alzheimer’s disease. Cerebral Cortex, 8(6):492–509, 1998.CrossRefGoogle Scholar
  55. 55.
    M. Vaillant and C. Davatzikos. Hierarchical matching of cortical features for deformable brain image registration. Proceedings of Inf. Proc. in Med. Imag., pages 182–195, 1999.Google Scholar
  56. 56.
    D. Van Essen and H. Drury. Structural and functional analyses of human cerebral cortex using a surface-based atlas. Journal of Neuroscience, 17(18):7079–7102, 1997.Google Scholar
  57. 57.
    C. Xu, D. Pham, and J. Prince. Medical image segmentation using deformable models. Handbook of Medical Imaging - Medical Image Processing and Analysis, 2:129–174, 2000.CrossRefGoogle Scholar
  58. 58.
    C. Xu, D. Pham, M. Rettmann, D. Yu, and J. Prince. Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE TMI, 18:467–480, 1999.Google Scholar
  59. 59.
    X. Zeng, L. Staib, R. Schultz, and J. Duncan. Segmentation and measurement of the cortex from 3d mr images using coupled surfaces propagation. IEEE TMI, 18:100–111, 1999.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of RadiologyMGH/Harvard Medical SchoolCharlestownUSA

Personalised recommendations