Advertisement

Image-based haemodynamics simulation in intracranial aneurysms

  • A. G. Radaelli
  • H. Bogunović
  • M. C. Villa Uriol
  • J. R. Cebral
  • A. F. FrangiEmail author
Chapter

Abstract

Image-based haemodynamics simulation is a computational technique that combines patient-specific vascular modeling from medical images with Computational Fluid Dynamics techniques to approximate the complex blood flow characteristics of healthy and diseased vessels. Advances in image quality, algorithmic sophistication and computing power are enabling the introduction of such technology not only as a biomedical research tool but also for clinical practice. In particular, the interaction between haemodynamical forces and arterial wall biology is believed to play an important role in the formation, growth and, eventually, rupture of intracranial aneurysms. Due to the absence of ground truth image modalities to measure blood flow, image-based haemodynamics simulation represents an attractive tool to provide insight into the haemodynamics characteristics of intracranial aneurysms. In this chapter, we provide an overview of the main components of this technique, illustrate recent efforts in its validation and sensitivity analysis and discuss preliminary clinical studies and future research directions.

Keywords

Wall Shear Stress Magnetic Resonance Angiography Intracranial Aneurysm Computational Fluid Dynamics Simulation Spectral Element Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    STEP: A strategy towards the EuroPhysiome. http://www.europhysiome.org.
  2. 2.
    Towards virtual physiological human: multilevel modelling and simulation of the human anatomy and physiology. White Paper DG INFSO & DG JRC, 2005.Google Scholar
  3. 3.
    J. Alastruey, K. Parker, J. Peiró, S. Byrd, and S. Sherwin. Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. Journal of Biomechanics, 40(8):1794–1805, 2007.CrossRefGoogle Scholar
  4. 4.
    S. Appanaboyina, F. Mut, R. Lohner, C. Putman, and J. Cebral. Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. International Journal for Numerical Methods in Fluids, In press, 77, 2007.Google Scholar
  5. 5.
    M. Attene and B. Falcidieno. ReMESH: An Interactive Environment to Edit and Repair Triangle Meshes. SMI06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006 (SMI06).Google Scholar
  6. 6.
    J. Bloomenthal. An implicit surface polygonizer. Graphics Gems IV, pages 324–349, 1994.Google Scholar
  7. 7.
    A. Burleson and V. Turitto. Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior. On behalf of the Subcommittee on Biorheology of the Scientific and Standardization Committee of the ISTH. Thromb Haemost, 76(1):118–23, 1996.Google Scholar
  8. 8.
    F. Calamante, P. Yim, and J. Cebral. Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage, 19(2):341–353, 2003.CrossRefGoogle Scholar
  9. 9.
    V. Caselles, R. Kimmel, and G. Sapiro. Geodesic Active Contours. International Journal of Computer Vision, 22(1):61–79, 1997.CrossRefzbMATHGoogle Scholar
  10. 10.
    M. Castro, C. Putman, and J. Cebral. Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics. American Journal of Neuroradiology, 27(8):1703–1709, 2006.Google Scholar
  11. 11.
    M. Castro, C. Putman, and J. Cebral. Patient-Specific Computational Modeling of Cerebral Aneurysms With Multiple Avenues of Flow From 3D Rotational Angiography Images. Academic Radiology, 13(7):811–821, 2006.CrossRefGoogle Scholar
  12. 12.
    J. Cebral, M. Castro, S. Appanaboyina, C. Putman, D. Millan, and A. Frangi. Efficient Pipeline for Image-Based Patient-Specific Analysis of Cerebral Aneurysm Hemodynamics: Technique and Sensitivity. IEEE Transactions on Medical Imaging, 24(4):457–467, 2005.CrossRefGoogle Scholar
  13. 13.
    J. Cebral, M. Castro, J. Burgess, R. Pergolizzi, M. Sheridan, and C. Putman. Characterization of Cerebral Aneurysms for Assessing Risk of Rupture By Using Patient-Specific Computational Hemodynamics Models. American Journal of Neuroradiology, 26(10):2550–2559, 2005.Google Scholar
  14. 14.
    J. Cebral, M. Castro, T. Satoh, and J. Burgess. Evaluation of image-based CFD models of cerebral aneurysms using MRI. ISMRM Flow Motion Workshop, Zurich, Switzerland, July, pages 11–13, 2004.Google Scholar
  15. 15.
    J. Cebral, R. Lohner, and J. Burgess. Computer Simulation of Cerebral Artery Clipping: Relevance to Aneurysm Neuro-Surgery Planning. Proc. ECCOMAS, pages 11–14, 2000.Google Scholar
  16. 16.
    J. Cebral, A. Radaelli, A. Frangi, and C. Putman. Qualitative comparison of intra-aneurysmal flow structures determined from conventional and virtual angiograms. Proceedings of SPIE, 6511:65111E, 2007.CrossRefGoogle Scholar
  17. 17.
    I. Chatziprodromou, V. Butty, V. Makhijani, D. Poulikakos, and Y. Ventikos. Pulsatile Blood Flow in Anatomically Accurate Vessels with Multiple Aneurysms: A Medical Intervention Planning Application of Computational Haemodynamics. Flow, Turbulence and Combustion, 71(1):333–346, 2003.CrossRefzbMATHGoogle Scholar
  18. 18.
    L. Dempere-Marco, E. Oubel, M. Castro, C. Putman, A. Frangi, and J. Cebral. CFD Analysis Incorporating the Influence of Wall Motion: Application to Intracranial Aneurysms. Lecture notes in computer science, 4191:438–445, 2006.CrossRefGoogle Scholar
  19. 19.
    D. Doorly, S. Sherwin, P. Franke, and J. Peiró. Vortical Flow Structure Identification and Flow Transport in Arteries. Computer Methods in Biomechanics and Biomedical Engineering, 5(3):261–273, 2002.CrossRefGoogle Scholar
  20. 20.
    U. Ernemann, E. Gronewaller, F. Duffner, O. Guervit, J. Claassen, and M. Skalej. Influence of Geometric and Hemodynamic Parameters on Aneurysm Visualization during Three-Dimensional Rotational Angiography: An in Vitro Study. American Journal of Neuroradiology, 24(4):597–603, 2003.Google Scholar
  21. 21.
    M. Ford, N. Alperin, S. Lee, D. Holdsworth, and D. Steinman. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiological Measurement, 26(4):477–488, 2005.CrossRefGoogle Scholar
  22. 22.
    M. Ford, H. Nikolov, J. Milner, S. Lownie, E. DeMont, W. Kalata, F. Loth, D. Holdsworth, and D. Steinman. PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically-Realistic Cerebral Aneurysm Models. Journal of Biomechanical Engineering, In press, 2007.Google Scholar
  23. 23.
    M. Ford, G. Stuhne, H. Nikolov, D. Habets, S. Lownie, D. Holdsworth, and D. Steinman. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Transactions on Medical Imaging, 24(12):1586–1592, 2005.CrossRefGoogle Scholar
  24. 24.
    G. Foutrakis, H. Yonas, and R. Sclabassi. Saccular Aneurysm Formation in Curved and Bifurcating Arteries. American Journal of Neuroradiology, 20(7):1309–1317, 1999.Google Scholar
  25. 25.
    P. T. J. Franke. Blood flow and transport in artificial devices. PhD thesis, Imperial College London, 2002.Google Scholar
  26. 26.
    S. Glagov, C. Zarins, D. Giddens, and D. Ku. Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries. Archives of pathology & laboratory medicine(1976), 112(10):1018–1031, 1988.Google Scholar
  27. 27.
    Y. Gobin, J. Counord, P. Flaud, and J. Duffaux. In vitro study of haemodynamics in a giant saccular aneurysm model: influence of flow dynamics in the parent vessel and effects of coil embolisation. Neuroradiology, 36(7):530–536, 1994.CrossRefGoogle Scholar
  28. 28.
    S. Harrison, J. Bernsdorf, D. Hose, and P. Lawford. Development of a Lattice Boltzmann Framework for Numerical Simulation of Thrombosis. International Journal of Modern Physics C, 18(04):483–491, 2007.CrossRefzbMATHGoogle Scholar
  29. 29.
    T. Hassan, E. Timofeev, T. Saito, H. Shimizu, M. Ezura, T. Tominaga, A. Takahashi, and K. Takayama. Computational Replicas: Anatomic Reconstructions of Cerebral Vessels as Volume Numerical Grids at Three-Dimensional Angiography. American Journal of Neuroradiology, 25(8):1356–1365, 752.Google Scholar
  30. 30.
    M. Hernandez and A. Frangi. Non-parametric geodesic active regions: Method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA. Medical Image Analysis, 11(3): 224–241, 2007.CrossRefGoogle Scholar
  31. 31.
    T. Hino. Computation of Free Surface Flow Around an Advancing Ship by the Navier-Stokes Equations. Proceedings: Fifth International Conference on Numerical Ship Hydrodynamics. Hiroshima, Japan, 1989.Google Scholar
  32. 32.
    T. Hirai, Y. Korogi, K. Ono, M. Yamura, S. Uemura, and Y. Yamashita. Pseudostenosis Phenomenon at Volume-rendered Three-dimensional Digital Angiography of Intracranial Arteries: Frequency, Location, and Effect on Image Evaluation. Radiology, 232:882–887, 2004.CrossRefGoogle Scholar
  33. 33.
    Y. Hoi, H. Meng, S. Woodward, B. Bendok, R. Hanel, L. Guterman, and L. Hopkins. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J Neurosurg, 101(4):676–681, 2004.CrossRefGoogle Scholar
  34. 34.
    J. Hop, G. Rinkel, A. Algra, and J. van Gijn. Case-Fatality Rates and Functional Outcome After Subarachnoid Hemorrhage A Systematic Review. Stroke, 28(3):660–664, 1997.CrossRefGoogle Scholar
  35. 35.
    L. Jou, A. Mohamed, D. Lee, and M. Mawad. 3D Rotational Digital Subtraction Angiography May Underestimate Intracranial Aneurysms: Findings from Two Basilar Aneurysms. American Journal of Neuroradiology, 28(9):1690–1692, 2007.CrossRefGoogle Scholar
  36. 36.
    L. Jou, C. Quick, W. Young, M. Lawton, R. Higashida, A. Martin, and D. Saloner. Computational Approach to Quantifying Hemodynamic Forces in Giant Cerebral Aneurysms. American Journal of Neuroradiology, 24(9):1804–1810, 168.Google Scholar
  37. 37.
    K. Kayembe, M. Sasahara, and F. Hazama. Cerebral aneurysms and variations in the circle of Willis. Stroke, 15(5):846–850, 1984.CrossRefGoogle Scholar
  38. 38.
    S. Lee and D. Steinman. On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation. Journal of Biomechanical Engineering, 129:273–278, 2007.CrossRefGoogle Scholar
  39. 39.
    B. Lieber and M. Gounis. The physics of endoluminal stenting in the treatment of cerebrovascular aneurysms. Neurological Research, 24:33–42, 2002.CrossRefGoogle Scholar
  40. 40.
    T. Liou and S. Liou. A review of in vitro studies of hemodynamic characteristics in terminal and lateral aneurysm models. Proc. Natl. Sci. Counc. ROC (B), 23(4):133–148, 1999.Google Scholar
  41. 41.
    R. Lohner. Regridding Surface Triangulations. Journal of Computational Physics, 126(1): 1–10, 1996.CrossRefGoogle Scholar
  42. 42.
    R. Löhner. Automatic unstructured grid generators. Finite Elements in Analysis & Design, 25(1-2):111–134, 1997.CrossRefzbMATHGoogle Scholar
  43. 43.
    R. Löhner. Renumbering strategies for unstructured-grid solvers operating on shared-memory, cache-based parallel machines. Computer Methods in Applied Mechanics and Engineering, 163(1-4):95–109, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    J. Myers, J. Moore, M. Ojha, K. Johnston, and C. Ethier. Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery. Annals of Biomedical Engineering, 29(2): 109–120, 2001.CrossRefGoogle Scholar
  45. 45.
    S. Osher and J. Sethian. Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation. Journal of Computational Physics, 79(1):12–49, 1988.CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    E. Oubel, M. De Craene, C. Putman, J. Cebral, and A. Frangi. Analysis of intracranial aneurysm wall motion and its effects on hemodynamic patterns. Proceedings of SPIE, 6511:65112A, 2007.CrossRefGoogle Scholar
  47. 47.
    S. Owen. A survey of unstructured mesh generation technology. 7th International Meshing Roundtable, 3(6), 1998.Google Scholar
  48. 48.
    N. Paragios and R. Deriche. Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation. International Journal of Computer Vision, 46(3):223–247, 2002.CrossRefzbMATHGoogle Scholar
  49. 49.
    A. Patera. A spectral element method for fluid dynamics-Laminar flow in a channel expansion. Journal of Computational Physics, 54:468–488, 1984.CrossRefzbMATHGoogle Scholar
  50. 50.
    J. Peiro, L. Formaggia, M. Gazzola, A. Radaelli, and V. Rigamonti. Shape reconstruction from medical images and quality mesh generation via implicit surfaces. International Journal for Numerical Methods in Fluids, 53(8):1339–1360, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer, Heidelberg, Germany, 2000.Google Scholar
  52. 52.
    T. Raaymakers, G. Rinkel, M. Limburg, and A. Algra. Mortality and Morbidity of Surgery for Unruptured Intracranial Aneurysms A Meta-Analysis. Stroke, 29(8):1531–1538, 1998.CrossRefGoogle Scholar
  53. 53.
    A. Radaelli, T. Martínez, E. Díaz, X. Mellado, M. Castro, C. Putman, L. Guimaraens, J. Cebral, and A. Frangi. Combined clinical and computational information in complex cerebral aneurysms: application to mirror cerebral aneurysms. Proceedings of SPIE, 6511:65111F, 2007.CrossRefGoogle Scholar
  54. 54.
    T. Satoh, C. Ekino, and C. Ohsako. Transluminal color-coded three-dimensional magnetic resonance angiography for visualization of signal Intensity distribution pattern within an unruptured cerebral aneurysm: preliminarily assessment with anterior communicating artery aneurysms. Neuroradiology, 46(8):628–634, 2004.CrossRefGoogle Scholar
  55. 55.
    T. Satoh, K. Onoda, and S. Tsuchimoto. Visualization of Intraaneurysmal Flow Patterns with Transluminal Flow Images of 3D MR Angiograms in Conjunction with Aneurysmal Configurations. American Journal of Neuroradiology, 24(7):1436–1445, 2004.Google Scholar
  56. 56.
    S. Sherwin, J. Peiró, O. Shah, G. Karamanos, and D. Doorly. Computational haemodynamics: geometry and non-newtonian modelling using spectral/hp element methods. Computing and Visualization in Science, 3(1):77–83, 2000.CrossRefzbMATHGoogle Scholar
  57. 57.
    M. Shojima, M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, and T. Kirino. Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms. Stroke, 35(11):2500–2505, 2004.CrossRefGoogle Scholar
  58. 58.
    D. Steinman, J. Milner, C. Norley, S. Lownie, and D. Holdsworth. Image-Based Computational Simulation of Flow Dynamics in a Giant Intracranial Aneurysm. American Journal of Neuroradiology, 24(4):559–566, 2003.Google Scholar
  59. 59.
    S. Tateshima, Y. Murayama, J. Villablanca, T. Morino, K. Nomura, K. Tanishita, and F. Vinuela. In Vitro Measurement of Fluid-Induced Wall Shear Stress in Unruptured Cerebral Aneurysms Harboring Blebs. Stroke, 34(1):187–192, 2003.CrossRefGoogle Scholar
  60. 60.
    S. Tateshima, K. Tanishita, H. Omura, J. Villablanca, and F. Vinuela. Intra-Aneurysmal Hemodynamics during the Growth of an Unruptured Aneurysm: In Vitro Study Using Longitudinal CT Angiogram Database. American Journal of Neuroradiology, 28(4):622, 2007.Google Scholar
  61. 61.
    G. Taubin. A signal processing approach to fair surface design. Computer Graphics, 29: 351–358, 1995.Google Scholar
  62. 62.
    C. Taylor, T. Hughes, and C. Zarins. Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering, 158(1-2):155–196, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    H. Tenjin. Evaluation of intraaneurysmal blood velocity by time-density curve analysis and digital subtraction angiography. American Journal of Neuroradiology, 19(7):1303–1307, 1998.Google Scholar
  64. 64.
    B. ter Haar Romeny, L. Florack, J. Koenderink, and M. Viergever. Scale space: its natural operators and differential invariants. Information Processing in Medical Imaging: 12th International Conference, IPMI’91, Wye, UK, July 7-12, 1991: Proceedings, 1991.Google Scholar
  65. 65.
    F. Thomasset. Implementation of Finite Element Methods for Navier-Stokes Equations. Springer-Verlag series in computational physics, 1981.Google Scholar
  66. 66.
    F. Tomasello, D. D’Avella, F. Salpietro, and M. Longo. Asymptomatic aneurysms. Literature meta-analysis and indications for treatment. J Neurosurg Sci, 42(1 Suppl 1):47–51, 1998.Google Scholar
  67. 67.
    A. Valencia. Flow dynamics in Models of Intracranial Terminal Aneurysms. Mech Chem Biosystems, 1:221–231, 2004.zbMATHGoogle Scholar
  68. 68.
    A. Valencia, A. Zarate, M. Galvez, and L. Badilla. Non-Newtonian blood ow dynamics in a right internal carotid artery with a saccular aneurysm. International Journal of Numerical Methods in Fluids, 50:751–764, 2006.CrossRefzbMATHGoogle Scholar
  69. 69.
    W. van Rooij and M. Sluzewski. Procedural Morbidity and Mortality of Elective Coil Treatment of Unruptured Intracranial Aneurysms. American Journal of Neuroradiology, 27(8): 1678–1680, 2006.Google Scholar
  70. 70.
    J. Wardlaw and P. White. The detection and management of unruptured intracranial aneurysms. Brain, 123(2):205–221, 2000.CrossRefGoogle Scholar
  71. 71.
    P. Wesseling. Principles of Computational Fluid Dynamics. Springer, 2001.Google Scholar
  72. 72.
    S. Wetzel, S. Meckel, A. Frydrychowicz, L. Bonati, E. Radue, K. Scheffler, J. Hennig, and M. Markl. In Vivo Assessment and Visualization of Intracranial Arterial Hemodynamics with Flow-Sensitized 4D MR Imaging at 3T. American Journal of Neuroradiology, 28(3):433, 2007.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. G. Radaelli
    • 1
  • H. Bogunović
    • 2
  • M. C. Villa Uriol
    • 3
  • J. R. Cebral
    • 4
  • A. F. Frangi
    • 3
    Email author
  1. 1.CISTIB Centre for Computational Imaging & Modelling in BiomedicineUniversitat Pompeu FabraBarcelonaSpain
  2. 2.CISTIB Centre for Computational Imaging & Modelling in BiomedicineUniversity of SheffieldBarcelonaSpain
  3. 3.CISTIB Centre for Computational Imaging & Modelling in BiomedicineUniversity of SheffieldSheffieldUK
  4. 4.Center for Computational Fluid Dynamics, School of Physics, Astronomy and Computational SciencesGeorge Mason UniversityFairfaxUSA

Personalised recommendations