Efficient Two-Phase Data Reasoning for Description Logics

  • Zsolt Zombori
Part of the IFIP – The International Federation for Information Processing book series (IFIPAICT, volume 276)

Abstract

Description Logics are used more and more frequently for knowledge representation, creating an increasing demand for efficient automated DL reasoning. However, the existing implementations are inefficient in the presence of large amounts of data. We present an algorithm to transform DL axioms to a set of function-free clauses of first-order logic which can be used for efficient, query oriented data reasoning. The described method has been implemented in a module of the DLog reasoner openly available on SourceForge to download.

References

  1. 1.
    Bachmair, L., Ganzinger, H.: Strict basic superposition. Lecture Notes in Computer Science 1421,160-174 (1998). URL citeseer.ist.psu.edu/bachmair98strict.htmlGoogle Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Automated Reasoning, pp. 19-99 (2001). URL citeseer.ist.psu.edu/bachmair01resolution.htmlGoogle Scholar
  3. 3.
    Horrocks, I.: Reasoning with expressive description logics: Theory and practice. In: Proc. of the 18th Int. Conf. on Automated Deduction (CADE 2002), 2392, pp. 1-15. Springer (2002)Google Scholar
  4. 4.
    Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In: P. Doherty, J. Mylopoulos, C.A. Welty (eds.) KR, pp. 57-67. AAAI Press (2006). URL http://dblp.unitrier.de/db/conf/kr/kr2006.html#HorrocksKS06
  5. 5.
    Luk ácsy, G., Szeredi, P.: Efficient description logic reasoning in Prolog: the DLog system. Tech. rep., Budapest University of Technology and Economics (2008). URL http://sintagma.szit.bme.hu/lukacsy/publikaciok/dlog tplp submission.pdf. Submitted to Theory and Practice of Logic Programming
  6. 6.
    Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. Ph.D. thesis, Univesit ät Karlsruhe (TH), Karlsruhe, Germany (2006)Google Scholar
  7. 7.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23-41 (1965). DOI http://doi.acm.org/10.1145/321250.321253 Google Scholar
  8. 8.
    Stickel, M.E.: A Prolog Technology Theorem Prover: A New Exposition and Implementation in Prolog. Theor. Comput. Sci. 104(1), 109-128 (1992)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© International Federation for Information Processing 2008

Authors and Affiliations

  • Zsolt Zombori
    • 1
  1. 1.Department of Computer Science and Information TheoryBudapest University of Technology and EconomicsHungary

Personalised recommendations