Skip to main content

Ether Glycerophospholipids: The Workhorse Lipids of Neural Membranes

  • Chapter
  • First Online:
Hot Topics in Neural Membrane Lipidology
  • 452 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aihara M., Ishii S., Kume K., and Shimizu T. (2000). Interaction between neurone and microglia mediated by platelet-activating factor. Genes Cells 5:397–406.

    PubMed  CAS  Google Scholar 

  • Albi E., Cataldi S., Magni M. V., and Sartori C. (2004). Plasmalogens in rat liver chromatin: new molecules involved in cell proliferation. J. Cell. Physiol. 201:439–446.

    PubMed  CAS  Google Scholar 

  • André A., Cabaret S., Berdeaux O., Juanéda P., Sébédio J. L., and Chardigny J. M. (2006a). Bioequivalence of docosahexaenoic acid and α-linolenic acid supplementations on plasmalogen, long-chain aldehyde, and docosahexaenoic acid levels in the brain of very old rats. Nutr. Res. 26:214–220.

    Google Scholar 

  • André A., Juanéda P., Sébédio J. L., and Chardigny J. M. (2005). Effects of aging and dietary n-3 fatty acids on rat brain phospholipids: focus on plasmalogens. Lipids. 40:799–806.

    PubMed  Google Scholar 

  • André A., Juanéda P., Sébédio J. L., and Chardigny J. M. (2006b). Plasmalogen metabolism-related enzymes in rat brain during aging: influence of n-3 fatty acid intake. Biochimie 88:103–111.

    Google Scholar 

  • Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2001). Effect of retinoic acid on the Ca2+-independent phospholipase A2 in nuclei of LA-N-1 neuroblastoma cells. Neurochem. Res. 26:83–88.

    PubMed  CAS  Google Scholar 

  • Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2003). Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: a specific receptor activation mediated with retinoic acid. Mol. Brain Res. 115:187–195.

    PubMed  CAS  Google Scholar 

  • Arai H. (2002). Platelet-activating factor acetylhydrolase. Prostaglandins Other Lipid Mediat. 68–69:83–94.

    PubMed  Google Scholar 

  • Arai H., Koizumi H., Aoki J., and Inoue K. (2002). Platelet-activating factor acetylhydrolase (PAF-AH). J. Biochem. 131:635–640.

    PubMed  CAS  Google Scholar 

  • Arditi M., Manogue K. R., Caplan M., and Yogev R. (1990). Cerebrospinal fluid cachectin/tumor necrosis factor-α and platelet-activating factor concentrations and severity of bacterial meningitis in children. J. Infect. Dis. 162:139–147.

    PubMed  CAS  Google Scholar 

  • Akisu M., Huseyinov A., Yalaz M., Cetin H., and Kultursay N. (2003). Selective head cooling with hypothermia suppresses the generation of platelet-activating factor in cerebrospinal fluid of newborn infants with perinatal asphyxia. Prostaglandins Leukot. Essent. Fatty Acids 69:45–50.

    PubMed  CAS  Google Scholar 

  • Baker R. R. and Chang H. (1993). The potential for platelet-activating factor synthesis in brain: properties of cholinephosphotransferase and 1-alkyl-sn-glycero-3-phosphate acetyltransferase in microsomal fractions of immature rabbit cerebral cortex. Biochim. Biophys. Acta Lipids Lipid Metab. 1170:157–164.

    CAS  Google Scholar 

  • Baker P. R. S., Owen J. S., Nixon A. B., Thomas L. N., Wooten R., Daniel L. W., O'Flaherty J. T., and Wykle R. L. (2002). Regulation of platelet-activating factor synthesis in human neutrophils by MAP kinases. Biochim. Biophys. Acta Mol. Cell Res. 1592:175–184.

    CAS  Google Scholar 

  • Bams-Mengerink A. M., Majoie C. B., Duran M., Wanders R. J., Van Hose J., Scheurer C. D., Barth P. G., and Poll-The B. T. (2006). MRI of the brain and cervical spinal cord in rhizomelic chondrodysplasia punctata. Neurology. 66:798–803.

    Google Scholar 

  • Bazan N. G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J. Lipid Res. 44:2221–2233.

    PubMed  CAS  Google Scholar 

  • Bazan N. G. (2005a). Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32:89–103.

    Google Scholar 

  • Bazan N. G. (2005b). Synaptic signaling by lipids in the life and death of neurons. Mol. Neurobiol. 31:219–230.

    Google Scholar 

  • Bazan N. G., Packard M. G., Teather L., and Allan G. (1997). Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochem. Int. 30:225–231.

    PubMed  CAS  Google Scholar 

  • Bazan N. G., Squinto S. P., Braquet P., Panetta T., and Marcheselli V. L. (1991). Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: intracellular PAF-binding sites and activation of a fos/jun/AP-1 transcriptional signaling system. Lipids 26:1236–1242.

    PubMed  CAS  Google Scholar 

  • Bichenkov E. and Ellingson J. S. (1999). Temporal and quantitative expression of the myelin-associated lipids, ethanolamine plasmalogen, galactocerebroside, and sulfatide, in the differentiating CG-4 glial cell line. Neurochem. Res. 24:1549–1556.

    PubMed  CAS  Google Scholar 

  • Bick R. J., Youker K. A., Pownall H. J., Van Winkle W. B., and Entman M. L. (1991). Unsaturated aminophospholipids are preferentially retained by the fast skeletal muscle CaATPase during detergent solubilization. Evidence for a specific association between aminophospholipids and the calcium pump protein. Arch. Biochem. Biophys. 286:346–352.

    CAS  Google Scholar 

  • Bito H., Nakamura M., Honda Z., Izumi T., Iwatsubo T., Seyama Y., Ogura A., Kudo Y., and Shimizu T. (1992). Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons. Neuron 9:285–294.

    PubMed  CAS  Google Scholar 

  • Blok W. L., Rabinovitch M., Zilberfarb V., Netea M. G., Buurman W. A., and Van der Meer J. W. M. (2002). The influence of dietary fish-oil supplementation on cutaneous Leishmania amazonensis infection in mice. Cytokine 19:213–217.

    PubMed  CAS  Google Scholar 

  • Breckenridge W. C., Morgan I. G., Zanetta J. P., and Vincendon G. (1973). Adult rat brain synaptic vesicles. II. Lipid composition. Biochim. Biophys. Acta 320:681–686.

    CAS  Google Scholar 

  • Brites P., Waterham H. R., and Wanders R. J. A. (2004). Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1636:219–231.

    CAS  Google Scholar 

  • Brodie C. (1995). Platelet activating factor induces nerve growth factor production by rat astrocytes. Neurosci. Lett. 186:5–8.

    PubMed  CAS  Google Scholar 

  • Callea L., Arese M., Orlandini A., Bargnani C., Priori A., and Bussolino F. (1999). Platelet activating factor is elevated in cerebral spinal fluid and plasma of patients with relapsing-remitting multiple sclerosis. J. Neuroimmunol. 94:212–221.

    PubMed  CAS  Google Scholar 

  • Chao W. and Olson M. S. (1993). Platelet-activating factor: receptors and signal transduction. Biochem. J. 292:617–629.

    PubMed  CAS  Google Scholar 

  • Clark G. D., Happel L. T., Zorumski C. F., and Bazan N. G. (1992). Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron. 9:1211–1216.

    Google Scholar 

  • Clark G. D., Zorumski C. F., McNeil R. S., Happel L. T., Ovella T., McGuire S., Bix G. J., and Swann J. W. (2000). Neuronal platelet-activating factor receptor signal transduction involves a pertussis toxin-sensitive G-protein. Neurochem. Res. 25:603–611.

    PubMed  CAS  Google Scholar 

  • Datta N. S., Wilson G. N., and Hajra A. K. (1984). Deficiency of enzymes catalyzing the biosynthesis of glycerol-ether lipids in Zellweger syndrome. A new category of metabolic disease involving the absence of peroxisomes. N. Engl. J. Med. 311:1080–1083.

    PubMed  CAS  Google Scholar 

  • del Cerro S., Arai A., and Lynch G. (1990). Inhibition of long-term potentiation by an antagonist of platelet-activating factor receptors. Behav. Neural Biol. 54:213–217.

    PubMed  CAS  Google Scholar 

  • del Zoppo G. J. and Mabuchi T. (2003). Cerebral microvessel responses to focal ischemia. J. Cereb. Blood Flow Metab. 23:879–894.

    PubMed  Google Scholar 

  • Demediuk P., Saunders R. D., Anderson D. K., Means E. D., and Horrocks L. A. (1985). Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc. Natl. Acad. Sci. USA 82:7071–7075.

    Google Scholar 

  • Edger A. D., Strosznajder J., and Horrocks L. A. (1982). Activation of ethanolamine phospholipase A2 in Brain during ischemia. J. Neurochem. 39:1111–1116.

    Google Scholar 

  • Engelmann B. (2004). Plasmalogens: targets for oxidants and major lipophilic antioxidants. Biochem. Soc. Trans. 32:147–150.

    PubMed  CAS  Google Scholar 

  • Engelmann B., Bräutigam C., and Thiery J. (1994). Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem. Biophys. Res. Commun. 204:1235–1242.

    PubMed  CAS  Google Scholar 

  • Engelmann B., Streich S., Schönthier U. M., Richter W. O., and Duhm J. (1992). Changes of membrane phospholipid composition of human erythrocytes in hyperlipidemias. I. Increased phosphatidylcholine and reduced sphingomyelin in patients with elevated levels of triacylglycerol-rich lipoproteins. Biochim. Biophys. Acta Lipids Lipid Metab. 1165:32–37.

    CAS  Google Scholar 

  • Faden A. I. and Halt P. (1992). Platelet-activating factor reduces spinal cord blood flow and causes behavioral deficits after intrathecal administration in rats through a specific receptor mechanism. J. Pharmacol. Exp. Ther. 261:1064–1070.

    PubMed  CAS  Google Scholar 

  • Faden A. I. and Tzendzalian P. A. (1992). Platelet-activating factor antagonists limit glycine changes and behavioral deficits after brain trauma. Am. J. Physiol. 263: R909–R914.

    PubMed  CAS  Google Scholar 

  • Farkas T., Kitajka K., Fodor E., Csengeri I., Lahdes E., Yeo Y. K., Krasznai Z., and Halver J. E. (2000). Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl. Acad. Sci. USA 97:6362–6366.

    Google Scholar 

  • Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.

    PubMed  CAS  Google Scholar 

  • FarooquiA. A., Farooqui T., and Horrocks L. A. (2008). Metabolism and Functions of Bioactive Ether Lipids in Brain. Springer, New York.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet-activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp. 107–134.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007a). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. J. Neurosci. Res. 85:1834–1850.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007b). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum Publishers, London, pp. 335–354.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.

    CAS  Google Scholar 

  • Farooqui A. A., Rapoport S. I., and Horrocks L. A. (1997a). Membrane phospholipid alterations in Alzheimer disease: deficiency of ethanolamine plasmalogens. Neurochem. Res. 22:523–527.

    Google Scholar 

  • Farooqui A. A., Rosenberger T. A., and Horrocks L. A. (1997b). Arachidonic acid, neurotrauma, and neurodegenerative diseases. In: Yehuda S. and Mostofsky D. I. (eds.), Handbook of Essential Fatty Acid Biology. Humana Press, Totowa, NJ, pp. 277–295.

    Google Scholar 

  • Farooqui A. A., Yang H. C., and Horrocks L. A. (1995). Plasmalogens, phospholipases A2 and signal transduction. Brain Res. Brain Res. Rev. 21:152–161.

    PubMed  CAS  Google Scholar 

  • Fernstrom J. D. (1999). Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids 34:161–169.

    PubMed  CAS  Google Scholar 

  • Fezza F., Bisogno T., Minassi A., Appendino G., Mechoulam R., and Di Marzo V. (2002). Noladin ether, a putative novel endocannabinoid: inactivation mechanisms and a sensitive method for its quantification in rat tissues. FEBS Lett. 513:294–298.

    PubMed  CAS  Google Scholar 

  • Ford D. A. and Hale C. C. (1996). Plasmalogen and anionic phospholipid dependence of the cardiac sarcolemmal sodium-calcium exchanger. FEBS Lett. 394:99–102.

    PubMed  CAS  Google Scholar 

  • Francescangeli E., Boila A., and Goracci G. (2000). Properties and regulation of microsomal PAF-synthesizing enzymes in rat brain cortex. Neurochem. Res. 25:705–713.

    PubMed  CAS  Google Scholar 

  • Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Br. J. Pharmacol. 132:1417–1422.

    PubMed  CAS  Google Scholar 

  • Gelb M. H., Min J.-H., and Jain M. K. (2000). Do membrane-bound enzymes access their substrates from the membrane or aqueous phase: interfacial versus non-interfacial enzymes. Biochim. Biophy. Acta 1488:20–27.

    CAS  Google Scholar 

  • Gelbard H. A., Nottet H. S., Swindell S., Jett M., Dzenko K. A., Genis P., White P., Wang L., Choi Y. B., and Zhang D. (1994). Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin. J. Virol. 68:4628–4635.

    PubMed  CAS  Google Scholar 

  • Gimenez R. and Aguilar J. (2001). Cytidine (5') diphosphocholine-induced decrease in cerebral platelet activating factor is due to inactivation of its synthesizing enzyme cholinephosphotransferase in aged rats. Neurosci. Lett. 299:209–212.

    PubMed  CAS  Google Scholar 

  • Ginsberg L., Rafique S., Xuereb J. H., Rapoport S. I., and Gershfeld N. L. (1995). Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer's disease brain. Brain Res. 698:223–226.

    PubMed  CAS  Google Scholar 

  • Ginsberg L., Xuereb J. H., and Gershfeld N. L. (1998). Membrane instability, plasmalogen content, and Alzheimer's disease. J. Neurochem. 70:2533–2538.

    PubMed  CAS  Google Scholar 

  • Glaser P. E. and Gross R. W. (1995). Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry 34:12193–12203.

    PubMed  CAS  Google Scholar 

  • Gorgas K., Teigler A., Komljenovic D., and Just W. W. (2006). The ether lipid-deficient mouse: tracking down plasmalogen functions. Biochim. Biophys. Acta Mol. Cell Res. 1763:1511–1526.

    CAS  Google Scholar 

  • Gross R. W. (1985). Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochemistry 24:1662–1668.

    PubMed  CAS  Google Scholar 

  • Guan Z. Z., Wang Y. A., Cairns N. J., Lantos P. L., Dallner G., and Sindelar P. J. (1999). Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:740–747.

    PubMed  CAS  Google Scholar 

  • Han X. and Gross R. W. (1991). Proton nuclear magnetic resonance studies on the molecular dynamics of plasmenylcholine/cholesterol and phosphatidylcholine/cholesterol bilayers. Biochim. Biophys. Acta Biomembr. 1063:129–136.

    CAS  Google Scholar 

  • HanuÅ¡ L., Abu-Lafi S., Fride E., Breuer A., Vogel Z., Shalev D. E., Kustanovich I., and Mechoulam R. (2001). 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc. Natl. Acad. Sci. USA 98:3662–3665.

    Google Scholar 

  • Hashimoto M., Hossain S., Shimada T., Sugioka K., Yamasaki H., Fujii Y., Ishibashi Y., Oka J. I., and Shido O. (2002). Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer's disease model rats. J. Neurochem. 81:1084–1091.

    PubMed  CAS  Google Scholar 

  • Hattori K., Adachi H., Matsuzawa A., Yamamoto K., Tsujimoto M., Aoki J., Hattori M., Arai H., and Inoue K. (1996). cDNA cloning and expression of intracellular platelet-activating factor (PAF) acetylhydrolase II. Its homology with plasma PAF acetylhydrolase. J. Biol. Chem. 271:33032–33038.

    PubMed  CAS  Google Scholar 

  • Hattori M., Arai H., and Inoue K. (1993). Purification and characterization of bovine brain platelet-activating factor acetylhydrolase. J. Biol. Chem. 268:18748–18753.

    PubMed  CAS  Google Scholar 

  • Hazen S. L., Ford D. A., and Gross R. W. (1991). Activation of a membrane-associated phospholipase A2 during rabbit myocardial ischemia which is highly selective for plasmalogen substrate. J. Biol. Chem. 266:5629–5633.

    PubMed  CAS  Google Scholar 

  • Hazen S. L. and Gross R. W. (1993). The specific association of a phosphofructokinase isoform with myocardial calcium-independent phospholipase A2. Implications for the coordinated regulation of phospholipolysis and glycolysis. J. Biol. Chem. 268:9892–9900.

    PubMed  CAS  Google Scholar 

  • Heymans H. S. A., Schutgens R. B. H., Tan R., van den Bosch H., and Borst P. (1983). Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature 306:69–70.

    PubMed  CAS  Google Scholar 

  • Hirashima Y., Endo S., KaraSawa K., Sato N., YokoYama K., Kurimoto M., Ikeda H., Setaka M., and Takaku A. (1999). Deficient platelet-activating factor and related enzymes in hemimegalencephaly. Childs Nerv. Syst. 15:98–101.

    PubMed  CAS  Google Scholar 

  • Hirashima Y., Endo S., Ohmori T., Kato R., and Takaku A. (1994). Platelet-activating factor (PAF) concentration and PAF acetylhydrolase activity in cerebrospinal fluid of patients with subarachnoid hemorrhage. J. Neurosurg. 80:31–36.

    PubMed  CAS  Google Scholar 

  • Hirashima Y., Endo S., Otsuji T., Karasawa K., Nojima S., and Takaku A. (1993b) Platelet-activating factor and cerebral vasospasm following subarachnoid hemorrhage. J. Neurosurg. 78:592–597.

    Google Scholar 

  • Hirashima Y., Farooqui A. A., Mills J. S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59:708–714.

    PubMed  CAS  Google Scholar 

  • Hirashima Y., Kato R., Endo S., Takaku A., Karasawa K., and Nojima S. (1993a). Immunofluorescent localization of platelet-activating factor (PAF) in the rat. Histochem. J. 25:830–833.

    Google Scholar 

  • Högyes E., Nyakas C., Kiliaan A., Farkas T., Penke B., and Luiten P. G. (2003). Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012.

    PubMed  Google Scholar 

  • Honda Z., Ishii S., and Shimizu T. (2002). Platelet-activating factor receptor. J. Biochem. 131:773–779.

    PubMed  CAS  Google Scholar 

  • Horrocks L. A. (1972). Content, composition, and metabolism of mammalian and avian lipids that contain ether groups. In: Snyder F. (ed.), Ether Lipids: Chemistry and Biology. Academic Press, New York, pp. 177–272.

    Google Scholar 

  • Horrocks L. A. and Sharma M. (1982). Plasmalogens and O-alkyl glycerophospholipids. In: Hawthorne J. N. and Ansell G. B. (eds.), Phospholipids, New Comprehensive Biochemistry, Vol. 4. Elsevier Biomedical Press, Amsterdam, pp. 51–93.

    Google Scholar 

  • Horrocks L. A., VanRollins M., and Yates A. J. (1981). Lipid changes in the ageing brain. In: Davison A. N. and Thompson R. H. S. (eds.), The Molecular Basis of Neuropathology. Edward Arnold Ltd., London, pp. 601–630.

    Google Scholar 

  • Hostettler M. E. and Carlson S. L. (2002). PAF antagonist treatment reduces pro-inflammatory cytokine mRNA after spinal cord injury. NeuroReport 13:21–24.

    PubMed  CAS  Google Scholar 

  • Hostettler M. E., Knapp P. E., and Carlson S. L. (2002). Platelet-activating factor induces cell death in cultured astrocytes and oligodendrocytes: involvement of caspase-3. Glia 38:228–239.

    PubMed  Google Scholar 

  • Ishii S., Matsuda Y., Nakamura M., Waga I., Kume K., Izumi T., and Shimizu T. (1996). A murine platelet-activating factor receptor gene: cloning, chromosomal localization and up-regulation of expression by lipopolysaccharide in peritoneal resident macrophages. Biochem. J. 314 (Pt 2):671–678.

    PubMed  CAS  Google Scholar 

  • Ishii S. and Shimizu T. (2000). Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog. Lipid Res. 39:41–82.

    PubMed  CAS  Google Scholar 

  • Iwamoto N., Kobayashi K., and Kosaka K. (1989). The formation of prostaglandins in the postmortem cerebral cortex of Alzheimer-type dementia patients. J. Neurol. 236:80–84.

    PubMed  CAS  Google Scholar 

  • Jagannatha H. M. and Sastry P. S. (1981). Ethanolamine plasmalogen & cholesterol ester metabolism in experimental allergic encephalomyelitis. Indian J. Biochem. Biophys. 18:411–416.

    PubMed  CAS  Google Scholar 

  • Janssen A., Baes M., Gressens P., Mannaerts G. P., Declercq P., and Van Veldhoven P. P. (2000). Docosahexaenoic acid deficit is not a major pathogenic factor in peroxisome-deficient mice. Lab. Invest. 80:31–35.

    PubMed  CAS  Google Scholar 

  • Karasawa K., Harada A., Satoh N., Inoue K., and Setaka M. (2003). Plasma platelet activating factor-acetylhydrolase (PAF-AH). Prog. Lipid Res. 42:93–114.

    PubMed  CAS  Google Scholar 

  • Kato K., Clark G. D., Bazan N. G., and Zorumski C. F. (1994). Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 367:175–179.

    PubMed  CAS  Google Scholar 

  • Kato K. and Zorumski C. F. (1996). Platelet-activating factor as a potential retrograde messenger. J. Lipid Mediat. Cell Signal. 14:341–348.

    PubMed  CAS  Google Scholar 

  • Katsuki H. and Okuda S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.

    PubMed  CAS  Google Scholar 

  • Kelley D. S., Taylor P. C., Nelson G. J., Schmidt P. C., Ferretti A., Erickson K. L., Yu R., Chandra R. K., and Mackey B. E. (1999). Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men. Lipids 34:317–324.

    PubMed  CAS  Google Scholar 

  • Kihara Y., Ishii S., Kita Y., Toda A., Shimada A., and Shimizu T. (2005). Dual phase regulation of experimental allergic encephalomyelitis by platelet-activating factor. J. Exp. Med. 202:853–863.

    PubMed  CAS  Google Scholar 

  • Kochanek P. M., Melick J. A., Schoettle R. J., Magargee M. J., Evans R. W., and Nemoto E. M. (1990). Endogenous platelet activating factor does not modulate blood flow and metabolism in normal rat brain. Stroke 21:459–462.

    PubMed  CAS  Google Scholar 

  • Kochanek P. M., Nemoto E. M., Melick J. A., Evans R. W., and Burke D. F. (1988). Cerebrovascular and cerebrometabolic effects of intracarotid infused platelet-activating factor in rats. J. Cereb. Blood Flow Metab. 8:546–551.

    PubMed  CAS  Google Scholar 

  • Kornecki E. and Ehrlich Y. H. (1991). Calcium ion mobilization in neuronal cells induced by PAF. Lipids 26:1243–1246.

    PubMed  CAS  Google Scholar 

  • Kubota M., Nakane M., Nakagomi T., Tamura A., Hisaki H., Shimasaki H., and Ueta N. (2001). Regional distribution of ethanolamine plasmalogen in the hippocampal CA1 and CA3 regions and cerebral cortex of the gerbil. Neurosci. Lett. 301:175–178.

    PubMed  CAS  Google Scholar 

  • Kumar R., Harvey S. A., Kester M., Hanahan D. J., and Olson M. S. (1988). Production and effects of platelet-activating factor in the rat brain. Biochim. Biophys. Acta. 963:375–383.

    PubMed  CAS  Google Scholar 

  • Lee T. C. (1998). Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394:129–145.

    CAS  Google Scholar 

  • Lee T. C., Malone B., and Snyder F. (1986). A new de novo pathway for the formation of 1-alkyl-2-acetyl-sn-glycerols, precursors of platelet activating factor. Biochemical characterization of 1-alkyl-2-lyso-sn-glycero-3-P:acetyl-CoA acetyltransferase in rat spleen. J. Biol. Chem. 261:5373–5377.

    PubMed  CAS  Google Scholar 

  • Lindsberg P. J., Hallenbeck J. M., and Feuerstein G. (1991). Platelet-activating factor in stroke and brain injury. Ann. Neurol. 30:117–129.

    PubMed  CAS  Google Scholar 

  • Lohner K. (1996). Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem.Phys. Lipids 81:167–184.

    PubMed  CAS  Google Scholar 

  • Maclennan K. M., Smith P. F., and Darlington C. L. (1996). Platelet-activating factor in the CNS. Prog. Neurobiol. 50:585–596.

    PubMed  CAS  Google Scholar 

  • Maeba R. and Ueta N. (2003). Ethanolamine plasmalogens prevent the oxidation of cholesterol by reducing the oxidizability of cholesterol in phospholipid bilayers. J. Lipid Res. 44:164–171.

    PubMed  CAS  Google Scholar 

  • Maeba R. and Ueta N. (2004). Determination of choline and ethanolamine plasmalogens in human plasma by HPLC using radioactive triiodide (1–) ion (125I3 –). Anal. Biochem. 331:169–176.

    PubMed  CAS  Google Scholar 

  • Mandel H., Sharf R., Berant M., Wanders R. J. A., Vreken P., and Aviram M. (1998). Plasmalogen phospholipids are involved in HDL-mediated cholesterol efflux: insights from investigations with plasmalogen-deficient cells. Biochem. Biophys. Res. Commun. 250:369–373.

    PubMed  CAS  Google Scholar 

  • Manya H., Aoki J., Kato H., Ishii J., Hino S., Arai H., and Inoue K. (1999). Biochemical characterization of various catalytic complexes of the brain platelet-activating factor acetylhydrolase. J. Biol. Chem. 274:31827–31832.

    PubMed  CAS  Google Scholar 

  • Manya H., Aoki J., Watanabe M., Adachi T., Asou H., Inoue Y., Arai H., and Inoue K. (1998). Switching of platelet-activating factor acetylhydrolase catalytic subunits in developing rat brain. J. Biol. Chem. 273:18567–18572.

    PubMed  CAS  Google Scholar 

  • Marcheselli V. L. and Bazan N. G. (1994). Platelet-activating factor is a messenger in the electroconvulsive shock-induced transcriptional activation of c-fos and zif-268 in hippocampus. J. Neurosci. Res. 37:54–61.

    PubMed  CAS  Google Scholar 

  • Marcheselli V. L., Rossowska M. J., Domingo M. T., Braquet P., and Bazan N. G. (1990). Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J. Biol. Chem. 265:9140–9145.

    PubMed  CAS  Google Scholar 

  • Martínez M., Vázquez E., García-Silva M. T., Manzanares J., Bertran J. M., Castelló F., and Mougan I. (2000). Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders. Am. J. Clin. Nutr. 71:376S–385S.

    PubMed  Google Scholar 

  • McHowat J., Liu S., and Creer M. H. (1998). Thrombin activates a membrane-associated calcium-independent PLA2 in ventricular myocytes. Am. J. Physiol. 274:C447–C454.

    PubMed  CAS  Google Scholar 

  • Moqbel R., Walsh G. M., Nagakura T., MacDonald A. J., Wardlaw A. J., Iikura Y., and Kay A. B. (1990). The effect of platelet-activating factor on IgE binding to, and IgE-dependent biological properties of, human eosinophils. Immunology 70:251–257.

    PubMed  CAS  Google Scholar 

  • Mori M., Aihara M., Kume K., Hamanoue M., Kohsaka S., and Shimizu T. (1996). Localization of platelet-activating factor receptor in the rat brain. Adv. Exp. Med. Biol. 407:357–363.

    Google Scholar 

  • Müller E., Dagenais P., Alami N., and Rola-Pleszczynski M. (1993). Identification and functional characterization of platelet-activating factor receptors in human leukocyte populations using polyclonal anti-peptide antibody. Proc. Natl. Acad. Sci. USA 90:5818–5822.

    Google Scholar 

  • Munn N. J., Arnio E., Liu D., Zoeller R. A., and Liscum L. (2003). Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. J. Lipid Res. 44:182–192.

    PubMed  CAS  Google Scholar 

  • Murphy R. C. (2001). Free-radical-induced oxidation of arachidonoyl plasmalogen phospholipids: antioxidant mechanism and precursor pathway for bioactive eicosanoids. Chem. Res. Toxicol. 14:463–472.

    PubMed  CAS  Google Scholar 

  • Nagan N. and Zoeller R. A. (2001). Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40:199–229.

    PubMed  CAS  Google Scholar 

  • Nishikawa M., Kimura S., and Akaike N. (1994). Facilitatory effect of docosahexaenoic acid on N-methyl-d-aspartate response in pyramidal neurones of rat cerebral cortex. J. Physiol. (London) 475:83–93.

    CAS  Google Scholar 

  • Nogami K. Hirashima Y., Endo S., and Takaku A. (1997). Involvement of platelet-activating factor (PAF) in glutamate neurotoxicity in rat neuronal cultures. Brain Res. 754:72–78.

    PubMed  CAS  Google Scholar 

  • Páldyová E., Bereczki E., Sántha M., Wenger T., Borsodi A., and Benyhe S. (2008). Noladin ether, a putative endocannabinoid, inhibits mu-opioid receptor activation via CB2 cannabinoid receptors. Neurochem. Int. 52:321–328.

    PubMed  Google Scholar 

  • Paltauf F. (1994). Ether lipids in biomembranes. Chem. Phys. Lipids 74:101–139.

    PubMed  CAS  Google Scholar 

  • Panwala C. M., Jones J. C., and Viney J. L. (1998). A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J. Immunol. 161:5733–5744.

    PubMed  CAS  Google Scholar 

  • Périchon R., Moser A. B., Wallace W. C., Cunningham S. C., Roth G. S., and Moser H. W. (1998). Peroxisomal disease cell lines with cellular plasmalogen deficiency have impaired muscarinic cholinergic signal transduction activity and amyloid precursor protein secretion. Biochem. Biophys. Res. Commun. 248:57–61.

    PubMed  Google Scholar 

  • Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    PubMed  CAS  Google Scholar 

  • Portilla D., Crew M. D., Grant D., Serrero G., Bates L. M., Dai G. H., Sasner M., Cheng J., and Buonanno A. (1998). cDNA cloning and expression of a novel family of enzymes with calcium-independent phospholipase A2 and lysophospholipase activities. J. Am. Soc. Nephrol. 9:1178–1186.

    PubMed  CAS  Google Scholar 

  • Poulos A., Bankier A., Beckman K., Johnson D., Robertson E. F., Sharp P., Sheffield L., Singh H., Usher S., and Wise G. (1991). Glyceryl ethers in peroxisomal disease. Clin. Genet. 39:13–25.

    PubMed  CAS  Google Scholar 

  • Prescott S. M., Zimmerman G. A., and McIntyre T. M. (1990). Platelet-activating factor. J. Biol. Chem. 265:17381–17384.

    PubMed  CAS  Google Scholar 

  • Prescott S. M., Zimmerman G. A., Stafforini D. M., and McIntyre T. M. (2000). Platelet-activating factor and related lipid mediators. Annu. Rev. Biochem. 69:419–445.

    PubMed  CAS  Google Scholar 

  • Ray P., Ray R., Broomfield C. A., and Berman J. D. (1994). Inhibition of bioenergetics alters intracellular calcium, membrane composition, and fluidity in a neuronal cell line. Neurochem. Res. 19:57–63.

    PubMed  CAS  Google Scholar 

  • Rice S. Q. J., Southan C., Boyd H. F., Terrett J. A., Macphee C. H., Moores K., Gloger I. S., and Tew D. G. (1998). Expression, purification and characterization of a human serine-dependent phospholipase A2 with high specificity for oxidized phospholipids and platelet activating factor. Biochem. J. 330:1309–1315.

    PubMed  CAS  Google Scholar 

  • Rouser G. and Yamamoto A. (1968). Curvilinear regression course of human brain lipid composition changes with age. Lipids 3:284–287.

    PubMed  CAS  Google Scholar 

  • Rubin B. B., Downey G. P., Koh A., Degousee N., Ghomashchi F., Nallan L., Stefanski E., Harkin D. W., Sun C. X., Smart B. P., Lindsay T. F., Cherepanov V., Vachon E., Kelvin D., Sadilek M., Brown G. E., Yaffe M. B., Plumb J., Grinstein S., Glogauer M., and Gelb M. H. (2005). Cytosolic phospholipase A2-α is necessary for platelet-activating factor biosynthesis, efficient neutrophil-mediated bacterial killing, and the innate immune response to pulmonary infection – cPLA2-α does not regulate neutrophil NADPH oxidase activity. J. Biol. Chem. 280:7519–7529.

    PubMed  CAS  Google Scholar 

  • Sarchielli P., Alberti A., Coppola F., Baldi A., Gallai B., Floridi A., Floridi A., Capocchi G., and Gallai V. (2004). Platelet-activating factor (PAF) in internal jugular venous blood of migraine without aura patients assessed during migraine attacks. Cephalalgia 24:623–630.

    PubMed  CAS  Google Scholar 

  • Schedin S., Sindelar P. J., Pentchev P., Brunk U., and Dallner G. (1997). Peroxisomal impairment in Niemann-Pick type C disease. J. Biol. Chem. 272:6245–6251.

    PubMed  CAS  Google Scholar 

  • Schonefeld M., Noble S., Bertorello M., Mandel L. J., Creer M. H., and Portilla D. (1996). Hypoxia-induced amphiphiles inhibit renal Na+, K+-ATPase. Kidney Int. 49:1289–1296.

    PubMed  CAS  Google Scholar 

  • Sergeeva M., Strokin M., and Reiser G. (2005). Regulation of intracellular calcium levels by polyunsaturated fatty acids, arachidonic acid and docosahexaenoic acid, in astrocytes: possible involvement of phospholipase A2. Reprod. Nutr. Dev. 45:633–646.

    PubMed  CAS  Google Scholar 

  • Serhan C. N. (2004). A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem. Cell Biol. 122:305–321.

    PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.

    PubMed  CAS  Google Scholar 

  • Sindelar P. J., Guan Z. Z., Dallner G., and Ernster L. (1999). The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic. Biol. Med. 26:318–324.

    PubMed  CAS  Google Scholar 

  • Smiley P. L., Stremler K. E., Prescott S. M., Zimmerman G. A., and McIntyre T. M. (1991). Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for platelet-activating factor. J. Biol. Chem. 266:11104–11110.

    PubMed  CAS  Google Scholar 

  • Snyder F. (1995). Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem. J. 305:689–705.

    PubMed  CAS  Google Scholar 

  • Snyder F., Fitzgerald V., and Blank M. L. (1996). Biosynthesis of platelet-activating factor and enzyme inhibitors. Adv. Exp. Med. Biol. 416:5–10.

    PubMed  CAS  Google Scholar 

  • Sogos V., Bussolino F., Pilia E., Torrelli S., and Gremo F. (1990). Acetylcholine-induced production of platelet-activating factor by human fetal brain cells in culture. J. Neurosci. Res. 27:706–711.

    PubMed  CAS  Google Scholar 

  • Squinto S. P., Block A. L., Braquet P., and Bazan N. G. (1989). Platelet-activating factor stimulates a fos/jun/AP-1 transcriptional signaling system in human neuroblastoma cells. J. Neurosci. Res. 24:558–566.

    PubMed  CAS  Google Scholar 

  • Stafforini D. M., McIntyre T. M., Carter M. E., and Prescott S. M. (1987). Human plasma platelet-activating factor acetylhydrolase association with lipoprotein particles and role in the degradation of platelet-activating factor. J. Biol. Chem. 262:4215–4222.

    PubMed  CAS  Google Scholar 

  • Stafforini D. M., McIntyre T. M., Zimmerman G. A., and Prescott S. M. (1997). Platelet-activating factor acetylhydrolases. J. Biol. Chem. 272:17895–17898.

    PubMed  CAS  Google Scholar 

  • Stafforini D. M., Prescott S. M., Zimmerman G. A., and McIntyre T. M. (1996). Mammalian platelet-activating factor acetylhydrolases. Biochim. Biophys. Acta 1301:161–173.

    PubMed  Google Scholar 

  • Stafforini D. M., Sheller J. R., Blackwell T. S., Sapirstein A., Yull F. E., McIntyre T. M., Bonventre J. V., Prescott S. M., and Roberts L. J. II (2006). Release of free F2-isoprostanes from esterified phospholipids is catalyzed by intracellular and plasma platelet-activating factor acetylhydrolases. J. Biol. Chem. 281:4616–4623.

    PubMed  CAS  Google Scholar 

  • Strokin M., Chechneva O., Reymann K. G., and Reiser G. (2006). Neuroprotection of rat hippocampal slices exposed to oxygen-glucose deprivation by enrichment with docosahexaenoic acid and by inhibition of hydrolysis of docosahexaenoic acid-containing phospholipids by calcium independent phospholipase A2. Neuroscience 140:547–553.

    PubMed  CAS  Google Scholar 

  • Strokin M., Sergeeva M., and Reiser G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br. J. Pharmacol. 139:1014–1022.

    PubMed  CAS  Google Scholar 

  • Sun G. Y., Horrocks L. A., and Farooqui A. A. (2007). The role of NADPH oxidase and phospholipases A2 in mediating oxidative and inflammatory responses in neurodegenerative diseases. J. Neurochem. 103:1–16.

    PubMed  CAS  Google Scholar 

  • Svensson C. I. and Yaksh T. L. (2002). The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu. Rev. Pharmacol. Toxicol. 42:553–583.

    PubMed  CAS  Google Scholar 

  • Takehara S., Mikashima H., Muramoto Y., Terasawa M., Setoguchi M., and Tahara T. (1990). Pharmacological actions of Y-24180, a new specific antagonist of platelet activating factor (PAF): II. Interactions with PAF and benzodiazepine receptors. Prostaglandins 40:571–583.

    PubMed  CAS  Google Scholar 

  • Teather L. A., Magnusson J. E., Chow C. M., and Wurtman R. J. (2002). Environmental conditions influence hippocampus-dependent behaviours and brain levels of amyloid precursor protein in rats. Eur. J. Neurosci. 16:2405–2415.

    PubMed  Google Scholar 

  • Tiberghien C., Laurent L., Junier M. P., and Dray F. (1991). A competitive receptor binding assay for platelet-activating factor (PAF): quantification of PAF in rat brain. J. Lipid Mediat. 3:249–266.

    PubMed  CAS  Google Scholar 

  • Tjoelker L. W. and Stafforini D. M. (2000). Platelet-activating factor acetylhydrolases in health and disease. Biochim. Biophys. Acta 1488:102–123.

    PubMed  CAS  Google Scholar 

  • Tokuoka S. M., Ishii S., Kawamura N., Satoh M., Shimada A., Sasaki S., Hirotsune S., Wynshaw-Boris A., and Shimizu T. (2003). Involvement of platelet-activating factor and LIS1 in neuronal migration. Eur. J. Neurosci. 18:563–570.

    PubMed  Google Scholar 

  • Tokutomi T., Maruiwa H., Hirohata M., Miyagi T., and Shigemori M. (2001). Production of platelet-activating factor by neuronal cells in the rat brain with cold injury. Neurol. Res. 23:605–611.

    PubMed  CAS  Google Scholar 

  • Turini M. E. and Holub B. J. (1994). The cleavage of plasmenylethanolamine by phospholipase A2 appears to be mediated by the low affinity binding site of the TxA2/PGH2 receptor in U46619- stimulated human platelets. Biochim. Biophys. Acta Lipids Lipid Metab. 1213:21–26.

    CAS  Google Scholar 

  • Uemura Y., Lee T. C., and Snyder F. (1991). A coenzyme A-independent transacylase is linked to the formation of platelet-activating factor (PAF) by generating the lyso-PAF intermediate in the remodeling pathway. J. Biol. Chem. 266:8268–8272.

    PubMed  CAS  Google Scholar 

  • Viani P., Zini I., Cervato G., Biagini G., Agnati L. F., and Cestaro B. (1995). Effect of endothelin-1 induced ischemia on peroxidative damage and membrane properties in rat striatum synaptosomes. Neurochem. Res. 20:689–695.

    PubMed  CAS  Google Scholar 

  • Wells K., Farooqui A. A., Liss L., and Horrocks L. A. (1995). Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20:1329–1333.

    PubMed  CAS  Google Scholar 

  • Williams S. D. and Ford D. A. (1997). Activation of myocardial cAMP-dependent protein kinase by lysoplasmenylcholine. FEBS Lett. 420:33–38.

    PubMed  CAS  Google Scholar 

  • Wolf M. J. and Gross R. W. (1996). The calcium-dependent association and functional coupling of calmodulin with myocardial phospholipase A2 – Implications for cardiac cycle-dependent alterations in phospholipolysis. J. Biol. Chem. 271:20989–20992.

    PubMed  CAS  Google Scholar 

  • Wu R., Lemne C., De Faire U., and Frostegard J. (1999). Antibodies to platelet-activating factor are associated with borderline hypertension, early atherosclerosis and the metabolic syndrome. J. Intern. Med. 246:389–397.

    PubMed  CAS  Google Scholar 

  • Xiao Y. F. and Li X. Y. (1999). Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 846:112–121.

    PubMed  CAS  Google Scholar 

  • Xu Y., Zhang B. S., Hua Z. C., John R. A., Bredt D. S., and Tao Y. X. (2004). Targeted disruption of PSD-93 gene reduces platelet-activating factor-induced neurotoxicity in cultured cortical neurons. Exp. Neurol. 189:16–24.

    Google Scholar 

  • Yehuda S., Rabinovitz S., Carasso R. L., and Mostofsky D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.

    PubMed  CAS  Google Scholar 

  • Yoshida H., Imaizumi T., Tanji K., Sakaki H., Metoki N., Hatakeyama M., Yamashita K., Ishikawa A., Taima K., Sato Y., Kimura H., and Satoh K. (2005). Platelet-activating factor enhances the expression of nerve growth factor in normal human astrocytes under hypoxia. Mol. Brain Res. 133:95–101.

    PubMed  CAS  Google Scholar 

  • Zhang J. P. and Sun G. Y. (1995). Free fatty acids, neutral glycerides, and phosphoglycerides in transient focal cerebral ischemia. J. Neurochem. 64:1688–1695.

    PubMed  CAS  Google Scholar 

  • Zheng H., Duclos R. I. J., Smith C. C., Farber H. W., and Zoeller R. A. (2006). Synthesis and biological properties of the fluorescent ether lipid precursor 1-O-[9'-( 1″-pyrenyl)]nonyl-sn-glycerol. J. Lipid Res. 47:633–642.

    PubMed  CAS  Google Scholar 

  • Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J. C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J. Lipid Res. 41:32–40.

    PubMed  CAS  Google Scholar 

  • Zimmerman G. A., Elstad M. R., Lorant D. E., McIntyre T. M., Prescott S. M., Topham M. K., Weyrich A. S., and Whatley R. E. (1996). Platelet-activating factor (PAF): signalling and adhesion in cell-cell interactions. Adv. Exp. Med. Biol. 416:297–304.

    PubMed  CAS  Google Scholar 

  • Zoeller R. A., Morand O. H., and Raetz C. R. H. (1988). A possible role for plasmalogens in protecting animal cells against photosensitized killing. J. Biol. Chem. 263:11590–11596.

    PubMed  CAS  Google Scholar 

  • Zommara M., Tachibana N., Mitsui K., Nakatani N., Sakono M., Ikeda I., and Imaizumi K. (1995). Inhibitory effect of ethanolamine plasmalogen on iron- and copper-dependent lipid peroxidation. Free Radic. Biol. Med. 18:599–602.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2009). Ether Glycerophospholipids: The Workhorse Lipids of Neural Membranes. In: Hot Topics in Neural Membrane Lipidology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09693-3_5

Download citation

Publish with us

Policies and ethics