Skip to main content

Apoptosis and Necrosis in Brain: Contribution of Glycerophospholipid, Sphingolipid, and Cholesterol-Derived Lipid Mediators

  • Chapter
  • First Online:
Hot Topics in Neural Membrane Lipidology
  • 417 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adayev T., Estephan R., Meserole S., Mazza B., Yurkow E. J., and Banerjee P. (1998). Externalization of phosphatidylserine may not be an early signal of apoptosis in neuronal cells, but only the phosphatidylserine-displaying apoptotic cells are phagocytosed by microglia. J. Neurochem. 71:1854–1864.

    PubMed  CAS  Google Scholar 

  • Adibhatla R. M., Hatcher J. F., and Dempsey R. J. (2002). Citicoline: neuroprotective mechanisms in cerebral ischemia. J. Neurochem. 80:12–23.

    PubMed  CAS  Google Scholar 

  • Adibhatla R. M., Hatcher J. F., and Dempsey R. J. (2003). Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid. Redox Sign. 5:647–654.

    CAS  Google Scholar 

  • Ahn M. J., Sherwood E. R., Prough D. S., Lin C. Y., and DeWitt D. S. (2004). The effects of traumatic brain injury on cerebral blood flow and brain tissue nitric oxide levels and cytokine expression. J. Neurotrauma 21:1431–1442.

    PubMed  Google Scholar 

  • Ajmone-Cat M. A., Nicolini A., and Minghetti L. (2003). Prolonged exposure of microglia to lipopolysaccharide modifies the intracellular signaling pathways and selectively promotes prostaglandin E2 synthesis. J. Neurochem. 87:1193–1203.

    PubMed  CAS  Google Scholar 

  • Almeida A., Allen K. L., Bates T. E., and Clark J. B. (1995). Effect of reperfusion following cerebral ischaemia on the activity of the mitochondrial respiratory chain in the gerbil brain. J Neurochem. 65:1698–1703.

    PubMed  CAS  Google Scholar 

  • Andersen J. K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nature Med. 10:S18–S25.

    PubMed  Google Scholar 

  • Anglade P., Mouatt-Prigent A., Agid Y., and Hirsch E. (1996). Synaptic plasticity in the caudate nucleus of patients with Parkinson's disease. Neurodegeneration 5:121–128.

    PubMed  CAS  Google Scholar 

  • Arai K., Ikegaya Y., Nakatani Y., Kudo I., Nishiyama N., and Matsuki N. (2001). Phospholipase A2 mediates ischemic injury in the hippocampus: a regional difference of neuronal vulnerability. Eur. J. Neurosci. 13:2319–2323.

    PubMed  CAS  Google Scholar 

  • Arroya A., Modriansky M., Serinkan F. B., Bello R. I., Matsura T., Jiang J., Tyurin V. A., Tyurina Y. Y., Fadeel B., and Kagan V. E. (2002). NADPH oxidase-dependent oxidation and externalization of phosphatidylserine during apoptosis in Me2SO-differentiated HL-60 cells. Role in phagocytic clearance. J. Biol. Chem. 277: 49965–49975.

    Google Scholar 

  • Asker C., Wiman K. G., and Selivanova G. (1999). p53-induced apoptosis as a safeguard against cancer. Biochem. Biophys. Res. Commun. 265:1–6.

    PubMed  CAS  Google Scholar 

  • Atsumi G., Murakami M., Kojima K., Hadano A., Tajima M., and Kudo I. (2000). Distinct roles of two intracellular phospholipase A2s in fatty acid release in the cell death pathway. Proteolytic fragment of type IVA cytosolic phospholipase A inhibits stimulus-induced arachidonate release, whereas that of type VI Ca2+-independent phospholipase A2 augments spontaneous fatty acid release. J. Biol. Chem. 275:18248–18258.

    PubMed  CAS  Google Scholar 

  • Atsumi G., Tajima M., Hadano A., Nakatani Y., Murakami M., and Kudo I. (1998). Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2 which undergoes proteolytic inactivation. J. Biol. Chem. 273:13870–13877.

    PubMed  CAS  Google Scholar 

  • Bamberger M., and Landreth G. E. (2002). Inflammation, apoptosis, and Alzheimer's disease. Neuroscientist 8:276–283.

    PubMed  CAS  Google Scholar 

  • Barrett G. L. (2000). The p75 neurotrophin receptor and neuronal apoptosis. Prog. Neurobiol. 61:205–229.

    PubMed  CAS  Google Scholar 

  • Battaglia F., Trinchese F., Liu S., Walter S., Nixon R. A., and Arancio O. (2003). Calpain inhibitors, a treatment for Alzheimer's disease: position paper. J. Mol. Neurosci. 20:357–362.

    PubMed  CAS  Google Scholar 

  • Bavir H., Fadeel B., Pallaino M. J., Witaso, E., Kurnikov I. V., Tyurino Y. Y., tyurin V. A., Amoscato A. A., Jiang J., Kochanek P. M., Dekosky S. T., Greenberger S., Shedova A. A., and Kagan V. E. (2006) Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim. Biophys. Acta 1757: 648–659.

    Google Scholar 

  • Beal M. F. (1998). Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta 1366: 211–223.

    PubMed  CAS  Google Scholar 

  • Beattie M. S., Farooqui A. A., and Bresnahan J. C. (2000). Review of current evidence for apoptosis after spinal cord injury. J. Neurotrauma 17:915–925.

    PubMed  CAS  Google Scholar 

  • Block M. L., and Hong J.-S. (2005). Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76:77–98.

    PubMed  CAS  Google Scholar 

  • Brand A. and Yavin E. (2001). Early ethanolamine phospholipid translocation marks stress-induced apoptotic cell death in oligodendroglial cells. J. Neurochem. 78:1208–1218.

    PubMed  CAS  Google Scholar 

  • Broker L. E., Kruyt F. A. E., and Giaccone G. (2005). Cell death independent of caspases: a review. Clin. Cancer. Res. 11:3155–3162.

    PubMed  Google Scholar 

  • Buki A., Farkas O., Doczi T., and Povlishock J. T. (2003). Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury. J. Neurotrauma. 20:261–268.

    PubMed  CAS  Google Scholar 

  • Calabrese V., Scapagnini G., Giuffrida Stella A. M., Bates T. E., and Clark J. B. (2001). Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem. Res. 26:739–764.

    PubMed  CAS  Google Scholar 

  • Callus B. A., and Vaux D. L. (2007). Caspase inhibitors: viral, cellular and chemical. Cell Death Differ. 14: 73–78.

    PubMed  CAS  Google Scholar 

  • Carragher N. O. (2006). Calpain inhibition: a therapeutic strategy targeting multiple disease states. Curr. Pharm. Des. 12:615–638.

    PubMed  CAS  Google Scholar 

  • Chen H. S. and Lipton S. A. (2006). The chemical biology of clinically tolerated NMDA receptor antagonists. J. Neurochem. 97:1611–1626.

    PubMed  CAS  Google Scholar 

  • Chen S. D., Lee J. m., Yang D. I., Nassief A., and Hsu C. Y. (2002). Combination therapy for ischemic stroke: potential of neuroprotectants plus thrombolytics. Am. J. Cardiovasc. Drugs 2: 303–313.

    PubMed  CAS  Google Scholar 

  • Choi S. Y., Gonzalvez F., Jenkins G. M., Slomianny C., Chretien D., Arnoult D., Petit P. X., and Frohman M. A. (2007). Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell. Death Differ. 14:597–606.

    PubMed  CAS  Google Scholar 

  • Claus R., Russwurm S., Meisner M., Kinscherf R., and Deigner H. P. (2000). Modulation of the ceramide level, a novel therapeutic concept? Curr. Drug Targets. 1:185–205.

    CAS  Google Scholar 

  • Cohen G. M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326: 1–16.

    PubMed  CAS  Google Scholar 

  • Creagh E. M., Conroy H., Martin S. J. (2003). Caspase-activation pathways in apoptosis and immunity. Immunol. Rev. 193:10–21.

    PubMed  CAS  Google Scholar 

  • Cummings B. S., McHowat J., and Schnellmann R. G. (2000). Phospholipase A2s in cell injury and death. J. Pharmacol. Exp. Ther. 294:793–799.

    PubMed  CAS  Google Scholar 

  • DeKosky S. T., Scheff S. W., and Styren S. D. (1996). Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5:417–421.

    PubMed  CAS  Google Scholar 

  • Demediuk P., Daly M. P., and Faden A. I. (1988). Free amino acid levels in laminectomized and traumatized rat spinal cord. Trans. Am. Soc. Neurochem. 19:176.

    Google Scholar 

  • Denecker G., Vercammen D., Declereq W., and Vandenabeele (2001). Apoptotic and necrotic cell death induced by death domain receptors. Cell. Mol. Life Sci. 58:356–370.

    PubMed  CAS  Google Scholar 

  • De Simone R., Ajmone-Cat M. A., and Minghetti L. (2004). Atypical antiinflammatory activation of microglia induced by apoptotic neurons: possible role of phosphatidylserine-phosphatidylserine receptor interaction. Mol. Neurobiol. 29:197–212.

    PubMed  Google Scholar 

  • Dickson D. W. (2004). Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect? J. Clin. Invest. 114:23–27.

    CAS  Google Scholar 

  • Di Rosa G., Odrijin T., Nixon R. A., and Arancio O. (2002). Calpain inhibitors: a treatment for Alzheimer's disease. J. Mol. Neurosci. 19: 135–141.

    PubMed  Google Scholar 

  • Dubin N. H., Blake D. A., DiBlasi M. C., Parmley T. H., and King T. M. (1982). Pharmacokinetic studies on quinacrine following intrauterine administration to cynomolgus monkeys. Fert. Steril. 38:735–740.

    CAS  Google Scholar 

  • Edsall L. C., Cuvillier O., Twitty S., Spiegel S., and Milstien S. (2001). Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells. J. Neurochem. 76:1573–1584.

    PubMed  CAS  Google Scholar 

  • Ekshyyan O. and Aw T. Y. (2004). Apoptosis in acute and chronic neurological disorders. Front Biosci. 9:1567–2576.

    PubMed  CAS  Google Scholar 

  • Emoto Y., Manome Y., Meinhardt G., Kisaki H., Kharnanda S., Robertson M., Ghayur T., Wong W. W., Kamen R., Weichseilbaum R., and Kute D. (1995). Proteolytic activation of protein kinase C δ by an ICE-like protease in apoptotic cells. EMBO J. 14:6148–6156.

    PubMed  CAS  Google Scholar 

  • Emoto K., Toyama-Sorimachi N., Karasuyama H., Inoue K., and Umeda M. (1997). Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp. Cell Res. 232:430–434.

    PubMed  CAS  Google Scholar 

  • Esposti M. D. (2002). Lipids, cardiolipin and apoptosis: a greasy licence to kill. Cell Death Differ. 9:234–236.

    PubMed  Google Scholar 

  • Estevez A. Y. and Phillis J. W. (1997). The phospholipase A2 inhibitor, quinacrine, reduces infarct size in rats after transient middle cerebral artery occlusion. Brain Res. 752:203–208.

    PubMed  CAS  Google Scholar 

  • Fadok V. A., Voelker D. R., Campbell P. A., Cohen J. J., Bratton D. L., and Henson P. M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 148:2207–2216.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Litsky M. L., Farooqui T., and Horrocks L. A. (1999). Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res. Bull. 49:139–153.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui A. A. (2000a). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids. 106:1–29.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–135.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks, L. A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist. 12:245–260.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., and Horrocks, L. A. (2007).Glycerophospholipids in Brain: phospholipases A2 in Neurological Disorders, pp. 1–394, Springer, New York.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., Farooqui T. (2007a). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. J. Neurosci. Res. 85:1834–1850.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., Farooqui T. (2007b). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks, L. A. (2008). Neurochemical Aspects of Excitotoxicity, pp. 1–290, Springer, New York.

    Google Scholar 

  • Fasulo L., Ugolini G., Visintin M., Bradbury A., Brancotini C., Verzillo V., Novak M., and Cattaneo A. (2000). The neuronal microtubule-associated protein tau is a substrate for caspase-3 and an effector of apoptosis. J. Neurochem. 75: 624–633.

    PubMed  CAS  Google Scholar 

  • Fiskum G., Murphy A. N., and Beal M. F. (1999). Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J. Cereb. Blood Flow Metab. 19:351–369.

    PubMed  CAS  Google Scholar 

  • Fuentes L., Pérez R., Nieto M. L., Balsinde J., and Balboa M. A. (2003). Bromoenol lactone promotes cell death by a mechanism involving phosphatidate phosphohydrolase-1 rather than calcium-independent phospholipase A2. J. Biol. Chem. 278:44683–44690.

    PubMed  CAS  Google Scholar 

  • Fujita R., Yoshida A., Mizuno K., and Ueda H. (2001). Cell density-dependent death mode switch of cultured cortical neurons under serum-free starvation stress. Cell. Mol. Neurobiol. 21: 317–324.

    PubMed  CAS  Google Scholar 

  • Fujita R and Ueda H. (2003). Protein kinase C-mediated cell death mode switch induced by high glucose. Cell Death Differ. 10: 1336–1347.

    PubMed  CAS  Google Scholar 

  • Gahm C., Holmin S., Wiklund P. N., Brundin L., and Mathiesen T. (2006). Neuroprotection by selective inhibition of inducible nitric oxide synthase after experimental brain contusion. J. Neurotrauma. 23:1343–1354.

    PubMed  Google Scholar 

  • Garcia Fernansez M., Troiano L., Moretti L., Nasi, M., Pinti M., Salvioli S., Dobrucki, J., and Cossarizza A. (2002) Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth Differ. 13: 449–455.

    Google Scholar 

  • Gentil B., Grimot F., and Riva C. (2003). Commitment to apoptosis by ceramides depends on mitochondrial respiratory function, cytochrome c release and caspase-3 activation in Hep-G2 cells. Mol. Cell Biochem. 254:203–210.

    PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y., Melamed E., and Offen D. (2001). Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975.

    PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y., Melamed E., and Offen D. (2006). Anti-inflammatory drugs in the treatment of neurodegenerative diseases: Current state. Curr. Pharmaceut. Design 12:3509–3519.

    CAS  Google Scholar 

  • Gilgun-Sherki Y., Rosenbaum Z., Melamed E., and Offen D. (2002). Antioxidant therapy in acute central nervous system injury: current state. Pharmacol. Rev. 54:271–284.

    PubMed  CAS  Google Scholar 

  • Goadsby P. J. (2007). Emerging therapies for migraine. Nat. Clin. Pract. Neurol. 3:610–619.

    PubMed  CAS  Google Scholar 

  • Gogvadze V. and Orrenius S. (2006). Mitochondrial regulation of apoptotic cell death. Chem. Biol. Interact. 163:4–14.

    PubMed  CAS  Google Scholar 

  • Gonzalvez F. and Gottlieb E. (2007). Cardiolipin: setting the beat of apoptosis. Apoptosis. 12:877–885.

    PubMed  CAS  Google Scholar 

  • Gorman A. M., Orrenius S., Ceccatelli S. (1998). Neuronal cell death: a demise with different shapes. Apoptosis in neuronal cells: role of caspases. Neuroreport 9:R49–R55.

    CAS  Google Scholar 

  • Graeber M. B. and Moran L. B. (2002). Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Path. 12:385–390.

    Google Scholar 

  • Graham S. H., and Chen J. (2001). Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab. 21:99–109.

    PubMed  CAS  Google Scholar 

  • Gudz T. I., Tserng K. Y., and Hoppel C. L. (1997). Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J. Biol. Chem. 272:24154–24158.

    PubMed  CAS  Google Scholar 

  • Gulbins E. and Grassme H. (2002). Ceramide and cell death receptor clustering. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1585: 139–145.

    CAS  Google Scholar 

  • Hannun Y. A. and Obeid L. M. (1995). Ceramide: an intracellular signal for apoptosis. Trends Biochem. Sci. 20:73–77.

    PubMed  CAS  Google Scholar 

  • Hansen H. S., Laurtzen L., Strand A. M., Moesgaard B., and Frandsen A. (1995). Glutamate stimulates the formation of N-acylphosphatidylethanolamine and N-acylethanolamine in cortical neurons in culture. Biochim. Biophys. Acta. 1258:303–308.

    PubMed  Google Scholar 

  • Hara H. (1999). Involvement of caspase on apoptosis in ischemia-induced neuronal cell death: usefulness of caspase inhibitors for stroke therapy. Nippon. Yakurigaku. Zasshi. 113: 97–111.

    PubMed  CAS  Google Scholar 

  • Hayakawa M., Ishida N., Takeuchi K., Shibamoto S., Hori T., Oku N., Ito F., and Tsujimoto M. (1993). Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J. Biochem. 268:11290–11295.

    CAS  Google Scholar 

  • Hayes K. C., Hull T. C., Delaney G. A., Potter P. J., Sequeira K. A., Campbell K., and Popovich P. G. (2002). Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J. Neurotrauma. 19:753–761.

    PubMed  CAS  Google Scholar 

  • He, X., Jenner, A. M., Ong, W. Y., Farooqui, A. A., and Patel, S. C. (2006) Lovastatin modulates increased cholesterol and oxysterol levels and has a neuroprotective effect on rat hippocampal neurons after kainate injury. J. Neuropathol. Exp. Neurol. 65: 652–663.

    PubMed  CAS  Google Scholar 

  • Higuchi Y., and Yoshimoto T. (2002). Arachidonic acid converts the glutathione depletion-induced apoptosis to necrosis by promoting lipid peroxidation and reducing caspase-3 activity in rat glioma cells. Arch Biochem. Biophys. 400:133–140.

    PubMed  CAS  Google Scholar 

  • Higuchi Y., Tanii H., Koriyama Y., Mizukami Y., and Yoshimoto T. (2007). Arachidonic acid promotes glutamate-induced cell death associated with necrosis by 12- lipoxygenase activation in glioma cells. Life Sci. 80:1856–1864.

    PubMed  CAS  Google Scholar 

  • Holtzman D. M. and Deshmukh, M. (1997). Caspases: a treatment target for neurodegenerative disease? Nat Med. 3:954–955.

    PubMed  CAS  Google Scholar 

  • Horner C. H., Davies H. A., Brown J., and Stewart M. G. (1996). Reduction in numerical synapse density in chick (Gallus domesticus) dorsal hippocampus following transient cerebral ischaemia. Brain Res. 735: 354–359.

    PubMed  CAS  Google Scholar 

  • Huwiler A., and Zangemeister-Wittke U. (2007). Targeting the conversion of ceramide to sphingosine 1-phosphate as a novel strategy for cancer therapy. Crit. Rev. Oncol. Hematol. 63: 150–159.

    PubMed  Google Scholar 

  • Ilieva E. V., Ayala V., Jove M., Dalfo E., Cacabelos D., Povedano M., Bellmunt M. J., Ferrer I., Pamplona R., and Portero-Otin M. (2007). Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130: 3111–3123.

    PubMed  Google Scholar 

  • Janicke R. U., Ng P., Sprengart M. L., and Porter A. G. (1998). Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem. 273: 15540–15545.

    PubMed  CAS  Google Scholar 

  • Janik P., Jamrozik Z., and Kwiecinski H. (2001). Neurotoxic activity of serum and cerebrospinal fluid of amyotrophic lateral sclerosis patients against some enzymes of glutamate metabolism. Neurol. Neurochir. Pol. 35(1 Suppl): 81–89.

    PubMed  Google Scholar 

  • Jayadev S., Hayter H. L., Andrieu N., Gamard C. J., Liu B., Balu R., Hayakawa M., Ito F., and Hannun Y. A. (1997). Phospholipase A2 is necessary for tumor necrosis factor α-induced ceramide generation in L929 cells. J. Biol. Chem. 272:17196–17203.

    PubMed  CAS  Google Scholar 

  • Jiang J., Serinkan B. F., Tyrina Y. Y., Borisenko G. G., Mi Z., Robbin P. D., Schroit A. J., and Kagan V. E. (2003). Peroxidation and externalization of phosphatidylserine associated with release of cytochrome c from mitochondria. Free Radic. Biol. Med. 35: 814–825.

    PubMed  CAS  Google Scholar 

  • John G. R., Lee S. C., Song X. Y., Rivieccio M., and Brosnan C. F. (2005). IL-1-regulated responses in astrocytes: relevance to injury and recovery. Glia. 49:161–176.

    PubMed  Google Scholar 

  • Juranek I. and Bezek S. (2005). Controversy of free radical hypothesis: Reactive oxygen species – Cause or consequence of tissue injury? Gen. Physiol. Biophys. 24:263–278.

    PubMed  CAS  Google Scholar 

  • Kadl A., Bochkov V. N., Huber J., and Leitinger N. (2004). Apoptotic cells as sources for biologically active oxidized phospholipids. Antioxid. Redox Signal. 6:311–320.

    PubMed  CAS  Google Scholar 

  • Kagan V. E., Borisenko G. G., Tyurina Y. Y., Tyurin Y. A., Jiang J., Potapovich A. I., Kini V., Amoscato A. A., and Fujii Y. (2004). Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic. Biol. Med. 37:1963–1985.

    PubMed  CAS  Google Scholar 

  • Kihara A. and Igarashi Y. (2004). Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. Mol. Biol. Cell. 15:4949–4959.

    PubMed  CAS  Google Scholar 

  • Kim T. W., Pettingell W. H., Jung Y. K., Kovacs D. M., and Tanzi R. E. (1997). Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 277:373–376.

    PubMed  CAS  Google Scholar 

  • Kim M., Lee H. S., LaForet G., McIntyre C., Martin E. J., Chang P., Kim T. W., Williams M., Reddy P. H., Tagle D., Boyce F. M., Won L., Heller A., aronin N., and DiFiglia M. (1999). Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci. 19:964–973.

    PubMed  CAS  Google Scholar 

  • Kim E. J., Park K. S., Chung S. Y., Sheen Y. Y., Moon D. C., Song Y. S., Kim K. S., Song S., Yun Y. P., Lee M. K., Oh K. W., Yoon D. Y., and Hong J. T. (2003). Peroxisome proliferator-activated receptor-gamma activator 15-deoxy-Delta12,14-prostaglandin J2 inhibits neuroblastoma cell growth through induction of apoptosis: association with extracellular signal-regulated kinase signal pathway. J Pharmacol. Exp. Ther. 307:505–517.

    PubMed  CAS  Google Scholar 

  • Kitamura Y., Taniguchi T., and Shimohama S. (1999). Apoptotic cell death in neurons and glial cells: implications for Alzheimer's disease. Jpn. J. Pharmacol. 79:1–5.

    PubMed  CAS  Google Scholar 

  • Klussmann S. and Martin-Villalba A. (2005). Molecular targets in spinal cord injury. J. Mol. Med. 83:657–671.

    PubMed  CAS  Google Scholar 

  • Kölsch H., Lütjohann D., Tulke A., Björkhem I., Rao M. L. (1999) The neurotoxic effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain Res. 818, 171–175.

    PubMed  Google Scholar 

  • Kolsch H., Ludwig M., Lutjohann D., Prange W., and Rao M. L. (2000). 7alpha-Hydroperoxycholesterol causes CNS neuronal cell death. Neurochem. Int. 36:507–512.

    PubMed  CAS  Google Scholar 

  • Kolsch H., Ludwig M., Lutjohann D., Prange W., and Rao M. L. (2001). Neurotoxicity of 24-hydroxycholesterol, an important cholesterol elimination product of the brain, may be prevented by vitamin E and estradiol-17beta. J. Neural. Transm. 108:475–488.

    PubMed  CAS  Google Scholar 

  • Kronke G., Bochkov V. N., Huber J., Gruber F., Bluml S., Furnkranz A., Kadl A., Binder B. R., and Leitinger N. (2003). Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein. J. Biol. Chem. 278:51006–51014.

    PubMed  Google Scholar 

  • Krysko D. V., Doneeker G., Festiens N., gabriels S., Parthoens E., O’Herde K., and Vandenabeele P. (2006). Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Differ. 13:2011–2022.

    PubMed  CAS  Google Scholar 

  • Labiche L. A. and Grotta J. C. (2004). Clinical trials for cytoprotection in stroke. NeuroRx 1:46–70.

    PubMed  Google Scholar 

  • Lauber, K., Bohn, E., Krober, S. M., Xiao, Y.-J., Blumenthal, S. G., Lindemann, R. K., Marini, P., Wiedig, C., Zobywalski, A., Baksh, S., xu, Y., Autenrieth, I. B., Schulze-Osthoff, K., Belka, C., stuhler, G., and Wesselborg, S. (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113: 717–730.

    PubMed  CAS  Google Scholar 

  • Lauber K., Blumenthal S. G., Waibel M., and Wesselborg S. (2004). Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell. 14:277–287.

    PubMed  CAS  Google Scholar 

  • Latorre E., Collado M. P., Fernandez I., Aragones M. D., Catalan R. E. (2002) Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur. J. Biochem. 270:36–46.

    Google Scholar 

  • Lee L-Y, Ong W-Y, Farooqui AA, and Burgunder J-M (2007) Role of brain calcium independent phospholipase A2 (iPLA2) in motor function-induction of vacuous chewing movements in rats after brain injections of the iPLA2 inhibitor bromoenol lactone Psychopharmacol 195: 387–395.

    CAS  Google Scholar 

  • Lees K. R. (1997). Cerestat and other NMDA antagonists in ischemic stroke. Neurology 49(5 Suppl 4):S66–S69.

    PubMed  CAS  Google Scholar 

  • Lemaire-ewing S., Prunet C., Montange T., Vejux A., Berthier A., Bessede G., Corcos L., Gambert P., Neel D., and Lizard S. (2005). Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol. 21:97–114.

    PubMed  CAS  Google Scholar 

  • Levade T., Malagarie-Cazenave S., Gouazé V., Ségui B., Tardy C., Betito S., Andrieu-Abadie N., and Cuvillier O. (2002). Ceramide in apoptosis: a revisited role. Neurochem. Res. 27:601–607.

    PubMed  CAS  Google Scholar 

  • Li M., Ona VO., Chen M., Kaul M., Tenneti L., Zhang X., Stieg P. E., Lipton S. A., and Friedlander R. M. (2000a). Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience 99:333–342.

    Google Scholar 

  • Li M., Ona VO., Guegan C., Chen M., Jackson-Lewis V., Andrew L. J., Olszewski A. J., Steeg P. E., Lee J. P. Przedborski S., and Friedlander R. M. (2000b). Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288:335–339.

    Google Scholar 

  • Lifshitz J., Sullivan P. G., Hovda D. A., Wieloch T., and McIntosh T. K. (2004). Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion 4:705–713.

    PubMed  CAS  Google Scholar 

  • Lizard G., Miguet C., Bessède G., Monier S., Gueldry S., Neel D., and Gambert P. (2000). Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occurring during 7-ketocholesterol-induced apoptosis. Free Radic. Biol. Med. 28:743–753.

    PubMed  CAS  Google Scholar 

  • Love S. (1999). Oxidative stress in brain ischemia. Brain Pathol. 9:119–131.

    Google Scholar 

  • Love R. (2001). Old drugs to treat new variant Creutzfeldt-Jakob disease. Lancet 358:563.

    PubMed  CAS  Google Scholar 

  • Luberto C., Kraveka J. M., and Hannun Y. A. (2002). Ceramide regulation of apoptosis versus differentiation: a walk on a fine line. Lessons from neurobiology. Neurochem. Res. 27:609–617.

    PubMed  CAS  Google Scholar 

  • Maceyka M., Payne S. G., Milstein S., and Spiegel S. (2002). Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim. Biophys. Acta 1585: 193–201.

    PubMed  CAS  Google Scholar 

  • MacEwan D. J. (1996). Elevated cPLA2 levels as a mechanism by which the p70 TNF and p75 NGF receptors enhance apoptosis. FEBS Lett. 379:77–81.

    PubMed  CAS  Google Scholar 

  • Maglione V., Cannella M., Gradini R., Cielaghi G. ans Squitieri F. (2006a). Huntingtin fragmentation and increased caspase 3, 8 and 9 activities in lymphoblasts with heterozygous and homozygous Huntington's disease mutation. Mech. Ageing Dev. 127:213–216.

    PubMed  CAS  Google Scholar 

  • Maglione V., Cannella M., Gradini R., Cislaghi G., and Squitieri F. (2006b). Severe ultrastructural mitochondrial changes in lymphoblasts homozygous for Huntington disease mutation. Mech. Ageing Dev. 127:217–220.

    Google Scholar 

  • Malaviya R., Ansell J., Hall L., Fahmy M., Argentieri R. L., Olini G. C. J., Pereira D. W., Sur R., and Cavender D. (2006). Targeting cytosolic phospholipase A2 by arachidonyl trifluoromethyl ketone prevents chronic inflammation in mice. Eur. J. Pharmacol. 539:195–204.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. (1996). Calcium and free radicals: Mediators of neurotrophic factors and excitatory transmitter-regulated developmental plasticity and death. Prospect. Dev. Neurobiol. 3:79–91.

    Google Scholar 

  • Mattson M. P., Keller J. N., Begley J. G. (1998). Evidence for synaptic apoptosis. Exp. Neurol. 153:35–48.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., and Duan W. (1999). “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J. Neurosci. Res. 58:152–166.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Culnsee C., and Yu Z. F. (2000). Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. 30:173–187.

    Google Scholar 

  • McIntosh T. K., Saatman K. E., Raghupathi R., Graham D. I., Smith D. H., Lee V. M., and Trojanowski J. Q. (1998). The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol. Appl. Neurobiol. 24:251–267.

    PubMed  CAS  Google Scholar 

  • McMillin J. B. and Dowhan W. (2002). Cardiolipin and apoptosis. Biochim. Biophys. Acta 1585: 97–107.

    PubMed  CAS  Google Scholar 

  • Merry D. E. and Korsmeyer S. J. (1997). Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci. 20:245–267.

    PubMed  CAS  Google Scholar 

  • Miguet-Alfonsi C., Prunet C., Monier S., Bessede G., Lemaire-Ewing S., Berthier A., Menetrier F., Neel D., Gambert P., and Lizard G. (2002). Analysis of oxidative processes and of myelin figures formation before and after the loss of mitochondrial transmembrane potential during 7beta-hydroxycholesterol and 7-ketocholesterol-induced apoptosis: comparison with various pro-apoptotic chemicals. Biochem. Pharmacol. 64:527–541.

    PubMed  CAS  Google Scholar 

  • Millanvoye-Van Brussel E., Topal G., Brunet A., Do Phaw T., Deckert V., Rendu F., and David-Dufilho M. (2004). Lysophosphatidylcholine and 7-oxocholesterol modulate Ca2+ signals and inhibit the phosphorylation of endothelial NO synthase and cytosolic phospholipase A2. Biochem. J. 380:533–539.

    PubMed  CAS  Google Scholar 

  • Miller E., and Kaplan D. R. (2001). Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol. Life Sci. 58:1045–1053.

    PubMed  CAS  Google Scholar 

  • Morrison R. S., Kinoshita Y., Johnson M. D., Guo W., and Garden G. A. (2003). p53-dependent cell death signaling in neurons. Neurochem. Res. 28:15–27.

    PubMed  CAS  Google Scholar 

  • Musiek E. S., Breeding R. S., Milne G. L., Zanoni G., Morrow J. D., and McLaughlin B. (2006). Cyclopentenone isoprostanes are novel bioactive products of lipid oxidation which enhance neurodegeneration. J. Neurochem. 97:1301–1313.

    PubMed  CAS  Google Scholar 

  • Nakata S., Yoshida T., Horinaka M., Shiraishi T., Wakada M., and Sakai T. (2004). Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 23:6261–6271.

    Google Scholar 

  • Nakata S., Yoshida T., Shiraishi T., Horinaka W., Kouhara J., Wakada M., and Sakai T. (2006). 15-Deoxy-δ12,14-prostaglandin J2 induces death receptor 5 expression through mRNA stabilization independently of PPAR-γ and potentiates TRAIL-induced apoptosis. Mol. Cancer Ther. 5:1827–1835.

    PubMed  CAS  Google Scholar 

  • Nasir J., Glodberg Y. P., and Hayden M. R. (1996). Huntington disease: new insights into the relationship between CAG expansion and disease. Hum. Mol. Genet. 5:1431–1435.

    PubMed  CAS  Google Scholar 

  • Natarajan V., Schmid P. C., and Schmid H. H. (1986). N-acylethanolamine phospholipid metabolism in normal and ischemic rat brain. Biochim. Biophys. Acta. 878:32–41.

    PubMed  CAS  Google Scholar 

  • Nicotera P., and Lipton S. A. (1999). Excitotoxins in neuronal apoptosis and necrosis. J. Cereb. Blood Flow Metab. 19:583–591.

    PubMed  CAS  Google Scholar 

  • Nicotera P., Leist M., and Manzo L. (1999). Neuronal cell death: a demise with different shapes. Trends Pharmacol. Sci. 20:46–51.

    PubMed  CAS  Google Scholar 

  • Nunez G., Benedict M. A., Hu Y., and Inohara N. (1998). Caspases: the proteases of the apoptotic pathway. Oncogene 17:3237–3245.

    PubMed  Google Scholar 

  • O’Callaghan Y. C., Woods J. A., and O’Brien N. M. (2001). Comparative study of the cytotoxicity and apoptosis-inducing potential of commonly occurring oxysterols. Cell Biol. Toxicol. 17:127–137.

    PubMed  Google Scholar 

  • Ohanian J. and Ohanian V. (2001). Sphingolipids in mammalian cell signalling. Cell Mol. Life Sci. 58:2053–2068.

    PubMed  CAS  Google Scholar 

  • Ong, W. Y., Goh, E. W., Lu, X. R., Farooqui, A. A., Patel, S. C., and Halliwell, B. (2003) Increase in cholesterol and cholesterol oxidation products, and role of cholesterol oxidation products in kainate-induced neuronal injury. Brain Pathol.13: 250–262.

    PubMed  CAS  Google Scholar 

  • Orrenius S., Gogvadze V. and Zhivotovsky B. (2007). Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 2007;47:143–183.

    CAS  Google Scholar 

  • Ovbiagele B., Kidwell C. S., Starkman S., and Saver J. L. (2003). Neuroprotective agents for the treatment of acute ischemic stroke. Curr. Neurol. Neurosci. Rep. 3: 9–20.

    PubMed  Google Scholar 

  • Panter S. S., Yum S. W., and Faden A. I. (1990). Alteration in extracellular amino acids after traumatic spinal cord injury. Ann. Neurol. 27:96–99.

    PubMed  CAS  Google Scholar 

  • Parente L. and Solito E. (2004). Annexin 1: more than an anti-phospholipase protein. Inflamm. Res. 53:125–132.

    PubMed  CAS  Google Scholar 

  • Peter C., Waibel M., Radu C. G., Yang L. Y., Witte O. N., Schulze-Osthoff K., Wesselborg S., and Lauber K. (2008). Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. J. Biol. Chem. 283:5296–5305.

    PubMed  CAS  Google Scholar 

  • Pettus B. J., Bielawska A., Subramanian P., Wijesinghe D. S., Maceyka M., Leslie C. C., Evans J. H., Freiberg J., Roddy P., Hannun Y. A., and Chalfant C. E. (2004). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J. Biol. Chem. 279:11320–11326.

    PubMed  CAS  Google Scholar 

  • Phillis J. W. and O'Regan M. H. (2004). A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res. Rev. 44:13–47.

    PubMed  CAS  Google Scholar 

  • Piacentini M., Fesus L., Farrace M. G., Ghibelli L., Piredda L., and Melino G. (1991). The expression of "tissue" transglutaminase in two human cancer cell lines is related with the programmed cell death (apoptosis). Eur. J. Cell. Biol. 54:246–254.

    PubMed  CAS  Google Scholar 

  • Proskuryakov S. Y., Konoplyannikov A. G., and Gabai V. L. (2003). Necrosis: a specific form of programmed cell death? Exp. Cell Res. 283: 1–16.

    CAS  Google Scholar 

  • Putcha G. V., Deshmukh M., Johnson E. M. Jr (1999) BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases. J. Neurosci. 19:7476–7485.

    PubMed  CAS  Google Scholar 

  • Rami A., Agarwal R., Botez G., and Winckler J (2000). mu-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res. 866: 299–312.

    PubMed  CAS  Google Scholar 

  • Rao M. L., Lutjohann D., Ludwig M., and Kolsch H. (1999). Induction of apoptosis and necrosis in human neuroblastoma cells by cholesterol oxides. Ann. NY Acad. Sci. 893:379–381.

    PubMed  CAS  Google Scholar 

  • Ratan R. R., Murphy T. H., and Baraban J. M. (1994). Oxidative stress induces apoptosis in embryonic cortical neurons. J. Neurochem. 62:376–379.

    PubMed  CAS  Google Scholar 

  • Ray S. K. and Banik N. L. (2003). Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr. Drug. Targets CNS Neurol. Disord. 2:173–189.

    PubMed  CAS  Google Scholar 

  • Ray S. K., Hogan E. L., and Banik N. L. (2003). Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res. Brain Res. Rev. 42:169–185.

    PubMed  CAS  Google Scholar 

  • Ray S. K. (2006). Currently evaluated calpain and caspase inhibitors for neuroprotection in experimental brain ischemia. Curr. Med. Chem. 13:3425–3440.

    PubMed  CAS  Google Scholar 

  • Richter C. R., Schweizer M., Cossarizza A., and Franceschi C. (1996). Control of apoptosis by the cellular ATP level. FEBS Lett. 378:107–110.

    PubMed  CAS  Google Scholar 

  • Rideout H. J. and Stefanis L. (2001). Caspase inhibition: a potential therapeutic strategy in neurological diseases. Histol. Histopathol. 16:895–908.

    PubMed  CAS  Google Scholar 

  • Rissman R. A., Poon W. W., Blurton-Jones M., Oddo S., Torp R., Vitek M. P., LaFerta F. M., Rohn T. T., and Cotman C. W. (2004). Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J. Clin. Invest. 114:121–130.

    PubMed  CAS  Google Scholar 

  • Robertson C. L. (2004). Mitochondrial dysfunction contributes to cell death following traumatic brain injury in adult and immature animals. J. Bioenerg. Biomembr. 36:363–368.

    PubMed  CAS  Google Scholar 

  • Roth K. A. (2001). Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J. Neuropathol. Exp. Neurol. 60:829–838.

    PubMed  CAS  Google Scholar 

  • Ruvolo P. P., Deng X., Ito T., Carr B. K., and May W. S. (1999). Ceramide induces Bcl-2 dephosphorylation via a mechanism involving mitochondrial PP2A. J. Biol. Chem. 274:20296–20300.

    PubMed  CAS  Google Scholar 

  • Ryan L., O’Callaghan Y. C., and O’Brien N. M. (2005). The role of the mitochondria in apoptosis induced by 7β-hydroxycholesterol and cholesterol-5β, 6β-epoxide. Br. J. Nutri. 94: 519–525.

    CAS  Google Scholar 

  • Ryan L., O’Callaghan Y. C., and O’Brien N. M. (2006). Involvement of calcium in 7beta -hydroxycholesterol and cholesterol-5β, 6β -epoxide-induced apoptosis. Int. J. Toxicol. 25:35–39.

    PubMed  CAS  Google Scholar 

  • Sacco R. L., DeRosa J. T., Haley E. C., Jr, Levin B., Ordronneau P., Phillips S. J., Rundek T., Snipes R. G., and Thompson J. L. (2001). Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial. J. Am. Med. Assoc. 285:1719–1728.

    CAS  Google Scholar 

  • Sastry P. S. and Subba Rao K. (2000) Apoptosis and the nervous system. J. Neurochem. 74:1–20.

    PubMed  CAS  Google Scholar 

  • Schapira A. H. (1998). Mitochondrial dysfunction in neurodegenerative disorders. Biochim. Biophys. Acta 1366: 225–233.

    PubMed  CAS  Google Scholar 

  • Schapira A. H. (1999). Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim. Biophys. Acta 1410: 159–170.

    PubMed  CAS  Google Scholar 

  • Schwandner R., Wiegmann K., Bernardo K., Kreder D., and Kronke M. (1998). TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J. Biol. Chem. 273:5916–5922.

    PubMed  CAS  Google Scholar 

  • Seleznev K., Zhao C., Zhang X. H., Song K., and Ma Z. A. (2006). Calcium-independent phospholipase A2 localizes in and protects mitochondria during apoptotic induction by staurosporine. J. Biol. Chem. 281: 22275–22288.

    PubMed  CAS  Google Scholar 

  • Shen W. H., Zhang C. Y., and Zhang G. Y. (2003). Antioxidants attenuate reperfusion injury after global brain ischemia through inhibiting nuclear factor-kappa B activity in rats. Acta Pharmacol. Sinica 24:1125–1130.

    Google Scholar 

  • Shinzawa K. and Tsujimoto Y. (2003). PLA2 activity is required for nuclear shrinkage in caspase-independent cell death. J. Cell Biol. 163:1219–1230.

    PubMed  CAS  Google Scholar 

  • Siesjö B. K. (1988). Mechanisms of ischemic brain damage. Crit. Care Med. 16:954–963.

    PubMed  Google Scholar 

  • Singh, J. K. Dasgupta, A., Adayna, T., Shahmehdi, S. A., Hammond, D., and Banerjee, P. (1996) apoptosis is associated with an increase in saturated fatty acid containing phospholipids in the neuronal cell line, HN2-5. Biochim. Biophys. Acta 1304: 171–178.

    PubMed  CAS  Google Scholar 

  • Singh I. N. and Hall E. D. (2007). Multifaceted roles of sphingosine-1-phosphate: How does this bioactive sphingolipid fit with acute neurological injury? J. Neurosci. Res. Dec 3 Epub ahead of print.

    Google Scholar 

  • Siskind L. J. (2005). Mitochondrial ceramide and the induction of apoptosis. J. Bioenerg. Biomembr. 37: 143–153.

    PubMed  CAS  Google Scholar 

  • Soane L., Kahraman S., Kristian T., and Fiskum G. (2007). Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J Neurosci. Res. 85:3407–3415.

    PubMed  CAS  Google Scholar 

  • Soeda S., Tsuji Y., Ochiai T., Mishima K., Iwasaki K., Fujiwara M., Yokomatsu T., Murano T., Shibuya S., and Shimeno H. (2004). Inhibition of sphingomyelinase activity helps to prevent neuron death caused by ischemic stress. Neurochem. Int. 45:619–626.

    PubMed  CAS  Google Scholar 

  • Song O., Lees-Miller S. P., Kumar S., Zhang N., Chan D. W., Smith G. C. M., Jackson S. P., Alnemri E. S., Litwack G., Khanna K. K., and Lavin M. F. (1996). DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 15:3238–3246.

    PubMed  CAS  Google Scholar 

  • Sonkusare S. K., Kaul C. L., and Ramarao P. (2005). Dementia of Alzheimer's disease and other neurodegenerative disorders – memantine, a new hope. Pharmacol. Res 51:1–17.

    PubMed  CAS  Google Scholar 

  • Stewart L. R., White A. R., Jobling M. F., Needham B. E., Maher F., Thyer J., Beyreuther K., Masters C. L., Collins S. J., and Cappai R. (2001). Involvement of the 5-lipoxygenase pathway in the neurotoxicity of the prion peptide PrP106–126. J. Neurosci. Res. 65:565–572.

    PubMed  CAS  Google Scholar 

  • Subramanian P., Stahelin R. V., Szulc Z., Bielawska A., Cho W., and Chalfant C. E. (2005). Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A and enhances the interaction of the enzyme with phosphatidylcholine. J. Biol. Chem. 280:17601–17607.

    PubMed  CAS  Google Scholar 

  • Sullivan P. G., Rabchevsky A. G., Waldmeier P. C., and Springer J. E. (2005). Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J. Neurosci. Res. 79:231–239.

    PubMed  CAS  Google Scholar 

  • Sundström E. and Mo L. L. (2002). Mechanisms of glutamate release in the rat spinal cord slices during metabolic inhibition. J. Neurotrauma. 19:257–266.

    PubMed  Google Scholar 

  • Takahashi M., Mukai H., Toshimori M., Miyamoto M., and Ono Y. (1998). Proteolytic activation of PKN by caspase-3 or related protease during apoptosis. Proc. Natl. Acad. Sci. USA 95: 11566–11571.

    Google Scholar 

  • Taguchi M., Goda K., Sugimoto K., Akama T., Yamamoto K., Suzuki T., Tomishima Y., Nishiguchi M., Arai K., Takahashi K., and Kobori T. (2003). Biological evaluation of sphingomyelin analogues as inhibitors of sphingomyelinase. Bioorg. Med. Chem. Lett. 13:3681–3684.

    PubMed  CAS  Google Scholar 

  • Takuma K., Baba A., and Matsuda T. (2004). Astrocyte apoptosis: implications for neuroprotection. Prog. Neurobiol. 72:111–127.

    PubMed  CAS  Google Scholar 

  • Tan D. X., Manchester L. C., Sainz R., Mayo J. C., Alvares F. L., and Reiter R. J. (2003). Antioxidant strategies in protection against neurodegenerative disorders. Expert Opin. Ther. Patents 13:1513–1543.

    CAS  Google Scholar 

  • Tanovic A. and Alfaro V. (2006). Glutamate-related excitotoxicity neuroprotection with memantine, an uncompetitive antagonist of NMDA-glutamate receptor, in Alzheimer's disease and vascular dementia. Rev. Neurol. 42:607–616.

    PubMed  CAS  Google Scholar 

  • Tariq M., Khan H. A., Al Moutaery K., and Al Deeb S. (2001). Protective effect of quinacrine on striatal dopamine levels in 6-OHDA and MPTP models of Parkinsonism in rodents. Brain Res. Bull. 54:77–82.

    PubMed  CAS  Google Scholar 

  • Tatton W. G. and Olanow C. W. (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim. Biophys. Acta 1410: 195–213.

    PubMed  CAS  Google Scholar 

  • Teunissen, C. E., Floris, S., Sonke, M., Dijkstra, C. D., De Vries, H. E., and Lutjohann, D. (2007) 24S-hydroxycholesterol in relation to disease manifestations of acute experimental autoimmune encephalomyelitis. J. Neurosci. Res. 85: 1499–505.

    PubMed  CAS  Google Scholar 

  • Tokuda E., Ono S., Ishige K., Watanabe S., Okawa E., Ito Y., and Suzuki T. (2007). Dysequilibrium between caspases and their inhibitors in a mouse model for amyotrophic lateral sclerosis. Brain Res. 1148: 234–242.

    PubMed  CAS  Google Scholar 

  • Tyrina Y. Y., Kaeai K., Tyrin V. A., Liu S. X., Kagan V. E., and Kabisiak J. P. (2004).The plasma membrane is the site of selective phosphatidylserine oxidation during apoptosis: role of cytochrome C. Antioxid Signal 6: 209–225.

    Google Scholar 

  • Troost D., Aten J., Morsink F., and de Jong J. M. (1995). Apoptosis in amyotrophic lateral sclerosis is not restricted to motor neurons. Bcl-2 expression is increased in unaffected post-central gyrus. Neuropathol. Appl. Neurobiol. 21:498–504.

    PubMed  CAS  Google Scholar 

  • Uchida K., Emoto K., Daleke D. L., Inoue K., and Umeda M. (1998). Induction of apoptosis by phosphatidylserine. J. Biochem. (Tokyo) 123:1073–1078.

    CAS  Google Scholar 

  • Ueda H., and Fujita R. (2004). Cell death mode switch from necrosis to apoptosis in brain. Biol. Pharm. Bull. 27:950–955.

    PubMed  CAS  Google Scholar 

  • Ueda H., and Fujita R. (2003). Switching of necrosis to apoptosis in retina and brain. The 123rd Annual meeting of the pharmaceutical Society of Japan, March 28, Nagasaki.

    Google Scholar 

  • Ulloth J. E., Casiano C. A., De Leon M. (2003). Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells. J. Neurochem. 84: 655–668.

    PubMed  CAS  Google Scholar 

  • Vaena de Avalos S., Jones J. A., and Hannun Y. A. (2004). Ceramides. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. The Oily Press, Bridgwater, England, pp. 135–167.

    Google Scholar 

  • Van Blitterswijk W. J., van der Luit A. H., Veldman R. J., Verheij M., and Borst J. (2003). Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem. J. 369:199–211.

    PubMed  Google Scholar 

  • Villena J., Henriguez M., Torres V., Moraga F., Dias-Elizondo J., Arredondo C., Chiong M., Olea C., Stutzin A., Lavandero S., Quest A. F. (2007). Ceramide-induced formation of ROS and ATP depletion trigger necrosis in lymphoid cells. Free Radic. Biol. Med. Dec 23; [Epub ahead of print].

    Google Scholar 

  • Virag L., Marmer D. J., and Szabo C. (1998). Crucial role of apopain in the peroxynitrite-induced apoptotic DNA fragmentation. Free Radic. Biol. Med. 25:1075–1082.

    PubMed  CAS  Google Scholar 

  • Vishwanath V., Wu Y., Boonplueang R., Beal M. E., and Andersen J. K. (2001). Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease. J. Neurosci. 21:9519–9528.

    Google Scholar 

  • Wallach D. (1997). Cell death induction by TNF: a matter of self control. Trends Biochem. Sci. 22:107–109.

    PubMed  CAS  Google Scholar 

  • Wang K. K. W. (2000). Calpain and caspase: Can you tell the difference. Trends Neurosci. 23:20–26.

    PubMed  Google Scholar 

  • Wang X. J., Li N., Liu B., sun H. Y., Chen T. Y., Li H. Z., Qiu J. M., Zhang L. H., Wan T., and Cao X. T. (2004). A novel human phosphatidylethanolamine binding protein resists tumor necrosis factor-α-induced apoptosis by inhibiting mitogen-activated protein kinase pathway activation and phosphatidylethanolamine externalization. J. Biol. Chem. 279: 45855–45864.

    PubMed  CAS  Google Scholar 

  • Wang H. G., Pathan N., Ethell I. M., Krajewski S., Yamaguchi Y. Shibasaki F., McKeon F., Bobo T., Franke T. F., and Reed J. C. (1999). Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343.

    PubMed  CAS  Google Scholar 

  • Wang J. Y., Wen L. L., Huang Y. N., Chen Y. T., and Ku M. C. (2006). Dual effects of antioxidants in neurodegeneration: Direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharmaceut. Design 12:3521–3533.

    CAS  Google Scholar 

  • Weber G. F. (1999). Final common pathways in neurodegenerative diseases: regulatory role of the glutathione cycle. Neurosci. Biobehav. Rev. 23:1079–1086.

    PubMed  CAS  Google Scholar 

  • Williams L., Wu F. Y., and Hamilton G. (2006). Mitochondrial permeability as a target for neurodegenerative disorders. Drugs Future 31:1083–1098.

    CAS  Google Scholar 

  • Wissing D., Mouritzen H., Egeblad M., Poirier G. G., and Jäättelä M. (1997). Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc. Natl. Acad. Sci. USA 94:5073–5077.

    Google Scholar 

  • Won J. S., Im Y. B., Khan M., Singh A. K., and Singh I. (2005). Involvement of phospholipase A2 and lipoxygenase in lipopolysaccharide-induced inducible nitric oxide synthase expression in glial cells. Glia 51:13–21.

    PubMed  Google Scholar 

  • Wu K. L., Hsu C., and Chan J. V. (2007). Impairment of the mitochondrial respiratory enzyme activity triggers sequential activation of apoptosis-inducing factor-dependent and caspase-dependent signaling pathways to induce apoptosis after spinal cord injury. J Neurochem. 101:1552–1566.

    PubMed  CAS  Google Scholar 

  • Xie Z., Moir R. D., Romano D. M., Tesco G., Kovacs D. M., and Tanzi R. E. (2004). Hypocapnia induces caspase-3 activation and increases Abeta production. Neurodegener Dis. 1:29–37.

    PubMed  CAS  Google Scholar 

  • Yokomatsu T., Murano T., Akiyama T., Koizumi J., Shibuya S., Tsuji Y., Soeda S., and Shimeno H. (2003). Synthesis of non-competitive inhibitors of sphingomyelinases with significant activity. Bioorg. Med. Chem. Lett. 13:229–236.

    PubMed  CAS  Google Scholar 

  • Yoshinaga N., Yasuda Y., Murayama T., and Nomura Y. (2000). Possible involvement of cytosolic phospholipase A2 in cell death induced by 1-methyl-4-phenylpyridinium ion, a dopaminergic neurotoxin, in GH3 cells. Brain Res. 855:244–251.

    PubMed  CAS  Google Scholar 

  • Zaitseva II, Sterling J., Mandrup-Poulsen T., Berggren P. O., and Zaitsev S. V. (2008). The imidazoline RX871024 induces death of proliferating insulin-secreting cells by activation of c-jun N-terminal kinase. Cell. Mol. Life Sci. 2008 Feb 16; [Epub ahead of print].

    Google Scholar 

  • Zamzami N., Hirsch T., Dallaporta B., Petit P. X., and Kroemer G. (1997) Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J. Bioenerg. Biomembr. 29: 185–193.

    PubMed  CAS  Google Scholar 

  • Zhang G., Gurtu V., Kain S. R., and Yan, G. (1997). Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23:525–531.

    PubMed  CAS  Google Scholar 

  • Zhivotovsky B., Samali A., Gahm A., and Orrenius S. (1999). Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ. 6:644–651.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A. (2009). Apoptosis and Necrosis in Brain: Contribution of Glycerophospholipid, Sphingolipid, and Cholesterol-Derived Lipid Mediators. In: Hot Topics in Neural Membrane Lipidology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09693-3_10

Download citation

Publish with us

Policies and ethics