Digital Science Library in Remote Instrumentation Systems

  • M. Lawenda
  • N. Meye
  • M. Stroiński
  • D. Kaliszan
  • T. Rajtar
  • M. Okoń
  • D. StokŁosa
Conference paper
Part of the Signals and Communication Technology book series (SCT)

Abstract

This chapter is devoted to the analysis of data management in remote instrumentation systems. Storage and management of significant amounts of data are crucial issues in every system where data need to be collected from different scientific equipment and next used to analysis or further processing. The authors propose their own solution, called digital science library (DSL), and analyze a specific implementation of DSL designed for nuclear magnetic resonance (NMR) spectroscopy. DSL, based on the data management system, is a distributed data-access environment. Its main function is to store and present data in the grid environment. Moreover, results of the conceptual work are presented in this chapter, starting with the requirements specification and finishing with the architectural design.

Keywords

Nuclear Magnetic Resonance Digital Library Data Management System Grid Environment Nuclear Magnetic Resonance Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bremser W.: “HOSE – A Novel Substructure Code”, { Anal. Chim. Acta}, 103, 355–365 (1978).CrossRefGoogle Scholar
  2. [2]
    Digital Library for Earth System Education,\AQ[20]{Please cite Refs. 2, 13, 16 or delete them from the list.} http://www.dlese.org/.
  3. [3]
  4. [4]
    Górny M., Nikisch J.A., Gruszczyński P., Mazurek C., Stroiński M., Swedrzyński A.: “Zastosowanie oprogramowania dLibra do budowy Wielkopolskiej Biblioteki Cyfrowej”, http://ebib.oss.wroc.pl/matkonf/iwb2/dlibra.php (in Polish).
  5. [5]
  6. [6]
    GRMS, http://www.gridlab.org/WorkPackages/wp-9/.Google Scholar
  7. [7]
    Grzybowski P., Mazurek C., SpychaŁa P., Wolski M.: “Data Management System for Grid and Portal Services. Submitted to Grid Computing”, { Infrastructure and Applications special issue of The International Journal of High Performance Computing Applications (IJHPCA)}, Cardiff University, UK, http://progress.psnc.pl/English/DMS.pdf.
  8. [8]
    NMR Data-sets Bank: A repository for raw NMR data-sets, http://nmrb.cbs.cnrs.fr/index.html.
  9. [9]
    Poznań Supercomputing and Networking Center, http://www.man.poznan.pl.
  10. [10]
    PROGRESS – Polish Research on Grid Environment for SUN Servers, http://progress.psnc.pl/English/index.html.
  11. [11]
  12. [12]
    Seavey B.R., Farr E.A., Westler W.M., Markley J.L.: “A Relational Database for Sequence-Specific Protein NMR Data”, J. Biomol. NMR, 1, 217–236 (1991).CrossRefGoogle Scholar
  13. [13]
    SMETE Digital Library, http://www.smete.org/smete/.
  14. [14]
  15. [15]
    Steinbeck Ch., Krause S., Kuhn S.: “NMRShiftDB – Constructing a Free Chemical Information System with Open-Source Components”, J. Chem. Inf. Comput. Sci., 43, 1733–1739 (2003).CrossRefGoogle Scholar
  16. [16]
    The National Science Digital Library, http://nsdl.org/.
  17. [17]
    Virtual Laboratory PSNC, http://vlab.psnc.pl/.
  18. [18]
    Wielkopolska Biblioteka Cyfrowa, http://www.wbc.poznan.pl.
  19. [19]
    Yamamoto O., Someno K., Wasada N., Hiraishi J., Hayamizu K., Tanabe K., Tamura T., Yanagisawa M.: “An Integrated Spectral Data Base System Including IR”, MS, 1H-NMR, 13C-NMR, ESR and Raman Spectra, Anal. Sci., 4, 233–239 (1988).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Lawenda
    • 1
  • N. Meye
    • 1
  • M. Stroiński
    • 1
  • D. Kaliszan
    • 1
  • T. Rajtar
    • 1
  • M. Okoń
    • 1
  • D. StokŁosa
    • 1
  1. 1.Poznań Supercomputing and Networking Center61-704 PoznańPoland

Personalised recommendations