Skip to main content

Special Topics in Milling

  • Chapter
Machining Dynamics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In other words, the ratio of the natural frequency to forcing frequency cannot be expressed as a ratio of whole numbers [60].

  2. 2.

    In the analysis of dynamic systems, a bifurcation represents the sudden appearance of a qualitatively different solution for a nonlinear system as some parameter is varied [61].

References

  1. Tlusty, J., W. Zaton, and F. Ismail, 1983, Stability Lobes in Milling, Annals of the CIRP, 32/1: 309–313.

    Article  Google Scholar 

  2. Smith, S. and Tlusty, J., 1992, Stabilizing Chatter by Automatic Spindle Speed Regulation, Annals of the CIRP, 41/1: 433–436.

    Article  Google Scholar 

  3. Delio, T., Tlusty, J., and Smith, S., 1992, Use of Audio Signals for Chatter Detection and Control, Journal of Engineering for Industry, 114: 146–157.

    Google Scholar 

  4. Smith, D., Smith, S., and Tlusty, J., 1998, High Performance Milling Torque Sensor, Journal of Manufacturing Science and Engineering, 120/3: 504–514.

    Article  Google Scholar 

  5. Smith, S. and Delio, T., 1992, Sensor-based Chatter Detection and Avoidance by Spindle Speed Selection, Journal of Dynamic Systems, Measurement, and Control, 114/3: 486–492.

    Article  Google Scholar 

  6. Schmitz, T., Davies, M., Medicus, K., Snyder, J., 2001, Improving High-Speed Machining Material Removal Rates by Rapid Dynamic Analysis, Annals of the CIRP, 50/1: 263–268.

    Article  Google Scholar 

  7. Schmitz, T., Medicus, K., and Dutterer, B., 2002, Exploring Once-per-revolution Audio Signal Variance as a Chatter Indicator, Machining Science and Technology, 6/2: 215–233.

    Article  Google Scholar 

  8. Schmitz, T., 2003, Chatter Recognition by a Statistical Evaluation of the Synchronously Sampled Audio Signal, Journal of Sound and Vibration, 262/3: 721–730.

    Article  Google Scholar 

  9. Cheng, C.-H., Duncan, G.S., and Schmitz, T., 2007, Rotating Tool Point Frequency Response Prediction using RCSA, Machining Science and Technology, 11/3: 433–446.

    Google Scholar 

  10. Davies, M., Dutterer, B., Pratt, J., and Schaut, A., 1998, On the Dynamics of High-Speed Milling with Long, Slender Endmills, Annals of the CIRP 47/1: 55–60.

    Article  Google Scholar 

  11. Tlusty, J., 1959, Systems and Methods of Machine Tool Testing, Microtechnic, 13: 162–178.

    Google Scholar 

  12. Bryan, J., Clouser, R., and Holland, B., 1967, Spindle Accuracy, American Machinist, 149–64.

    Google Scholar 

  13. American National Standards Institute, American Society of Mechanical Engineers, 1985, ANSI/ASME B89.3.4 M, Axes of Rotation: Methods for Specifying and Testing, New York.

    Google Scholar 

  14. Smith, S. and Winfough, W.R., 1994, The Effect of Runout Filtering on the Identification of Chatter in the Audio spectrum of Milling, Transactions of the NAMRI/SME, 22: 173–178.

    Google Scholar 

  15. Schmitz, T., Couey, J., Marsh, E., Mauntler, N., and Hughes, D., 2007, Runout Effects in Milling: Surface finish, Surface Location Error, and Stability, International Journal of Machine Tools and Manufacture, 47: 841–851.

    Article  Google Scholar 

  16. Kline, W. and DeVor, R., 1983, The Effect of Runout on Cutting Geometry and Forces in End Milling, International Journal of Machine Tool Design and Research, 23/2-3: 123–140.

    Article  Google Scholar 

  17. Armarego, E. and Deshpande, N., 1991, Computerized End Milling Force Predictions with Cutting Models Allowing Eccentricity and Cutter Deflections, Annals of the CIRP, 40/1: 25–29.

    Article  Google Scholar 

  18. Altintas, Y. and Chan, P., 1992, In-Process Detection and Suppression of Chatter in Milling, International Journal of Machine Tools and Manufacture, 32/3: 329–47.

    Article  Google Scholar 

  19. Liang, S. and Wang, J., 1994, Milling Force Convolution Modeling for Identification of Cutter Axis Offset, International Journal of Machine Tools and Manufacture, 34/8: 1177–1190.

    Article  Google Scholar 

  20. Feng, H.-Y. and Menq, C.-H., 1994, The Prediction of Cutting Forces in the Ball-End Milling Process – I. Model Formulation and Model Building Procedure, International Journal of Machine Tools and Manufacture, 34/5: 697–710.

    Article  Google Scholar 

  21. Feng, H.-Y. and Menq, C.-H., 1994, The Prediction of Cutting Forces in the Ball-End Milling Process – II. Cut Geometry Analysis and Model Verification, International Journal of Machine Tools and Manufacture, 34/5: 711–719.

    Article  Google Scholar 

  22. Yan, D., El-Wardany, T., and Elbestawi, M., 1995, A Multi-Sensor Strategy for Tool Failure Detection in Milling, International Journal of Machine Tools and Manufacture, 35/3: 383–398.

    Article  Google Scholar 

  23. Stevens, A. and Liang, S., 1995, Runout Rejection in End Milling through Two-Dimensional Repetitive Force Control, Mechatronics, 5/1: 1–13.

    Article  Google Scholar 

  24. Hekman, K. and Liang, S., 1997, In-Process Monitoring of End Milling Cutter Runout, Mechatronics, 7/1: 1–10.

    Article  Google Scholar 

  25. Baek, D., Ko, T., and Kim, H., 1997, A Dynamic Surface Roughness Model for Face Milling, Precision Engineering, 20/3: 171–178.

    Article  Google Scholar 

  26. Zheng, H., Li, X., Wong, Y., and Nee, A., 1999, Theoretical Modeling and Simulation of Cutting Forces in Face Milling with Cutter Runout, International Journal of Machine Tools and Manufacture, 39/12: 2003–2018.

    Article  Google Scholar 

  27. Yun, W.-S. and Cho, D.-W., 2001, Accurate 3-D Cutting Force Prediction using Cutting Condition Independent Coefficients in End Milling, International Journal of Machine Tools and Manufacture, 41/4: 463–478.

    Article  Google Scholar 

  28. Baek, D., Ko, T., and Kim, H., 2001, Optimization of Feedrate in a Face Milling Operation using a Surface Roughness Model, International Journal of Machine Tools and Manufacture, 41/3: 451–462.

    Article  Google Scholar 

  29. Mezentsev, O., Zhu, R., DeVor, R., Kapoor S., and Kline, W., 2002, Use of Radial Forces for Fault Detection in Tapping, International Journal of Machine Tools and Manufacture, 42/4: 479–488.

    Article  Google Scholar 

  30. Ko, J., Yun, W.-S., Cho, D.-W., and Ehmann, K.F., 2002, Development of a Virtual Machining System, Part 1: Approximation of the Size Effect for Cutting Force Prediction, International Journal of Machine Tools and Manufacture, 42/15: 1595–1605.

    Article  Google Scholar 

  31. Ranganath, S. and Sutherland, J., 2002, An Improved Method for Cutter Runout Modeling in the Peripheral Milling Process, Machining Science and Technology, 6/1: 1–20.

    Article  Google Scholar 

  32. Wang, J.-J. and Zheng, C., 2003, Identification of Cutter Offset in End Milling without a Prior Knowledge of Cutting Coefficients, International Journal of Machine Tools and Manufacture, 43/7: 687–697.

    Article  Google Scholar 

  33. Lazoglu, I., 2003, Sculpture Surface Machining: A Generalized Model of Ball-End Milling Force System, International Journal of Machine Tools and Manufacture, 43/5: 453–462.

    Article  Google Scholar 

  34. Atabey, F., Lazoglu, I., and Altintas, Y., 2003, Mechanics of Boring Processes – Part II. Multi-Insert Boring Heads, International Journal of Machine Tools and Manufacture, 43/5: 477–484.

    Article  Google Scholar 

  35. Slavicek, J., 1965, The effect of Irregular Tooth Pitch on Stability of Milling, Proceedings of the 6th Machine Tool Design and Research Conference, Pergamon Press, London, pp. 15–22.

    Google Scholar 

  36. Vanherck, P., 1967, Increasing Milling Machine Productivity by Use of Cutter with Non-Constant Edge Pitch, Proceedings of the 8th Machine Tool Design and Research Conference, pp. 947–960.

    Google Scholar 

  37. Doolan, P., Phadke, M.S., and Wu, S., 1975, Computer Design of Vibration Free Face Milling Cutters, Journal of Engineering for Industry, 97B/3: 925–930.

    Article  Google Scholar 

  38. Doolan, P., Burney, F., and Wu, S., 1976, Computer Design of a Multi-purpose Minimum Vibration Face Milling Cutter, International Journal of Machine Tool Design and Research, 16/3: 187–192.

    Article  Google Scholar 

  39. Tlusty, J., Ismail, F., and Zaton W., 1983, Use of Special Milling Cutters Against Chatter, Transactions of the NAMRI/SME, 11: 408–415.

    Google Scholar 

  40. Shirase, K. and Altintas, Y., 1995, Cutting Force and Dimensional Surface Error Generation in Peripheral Milling with Variable Pitch Helical End Mills, International Journal of Machine Tools and Manufacture, 36/5: 567–584.

    Google Scholar 

  41. Choudhurya, S. and Mathew, J., 1995, Investigations of the Effect of Non-uniform Insert Pitch on Vibration during Face Milling, International Journal of Machine Tools and Manufacture, 35/10: 1435–1444.

    Article  Google Scholar 

  42. Altintas, Y, Engin, S., and Budak, E., 1999, Analytical Stability Prediction and Design of Variable Pitch Cutters, Journal of Manufacturing Science and Engineering, 121: 173–178.

    Article  Google Scholar 

  43. Budak, E., 2003, An Analytical Design Method for Milling Cutters with Nonconstant Pitch to Increase Stability, Part 1: Theory, Part 2: Application, Journal of Manufacturing Science and Engineering, 123: 29–38.

    Article  Google Scholar 

  44. Stone, B., 1970, The Effect on the Chatter Behavior of Cutters With Different Helix Angles on Adjacent Teeth, Proceedings of the 11th International Machine Tool Design and Research Conference, pp. 169–180.

    Google Scholar 

  45. Davies, M., Pratt, J., Dutterer, B., and Burns, T., 2000, The Stability of Low Radial Immersion Milling, Annals of the CIRP 49/1: 37–40.

    Article  Google Scholar 

  46. Davies, M., Pratt, J., Dutterer, B., and Burns, T., 2002, Stability Prediction for Low Radial Immersion Milling, Journal of Manufacturing Science and Engineering, 124/2: 217–225.

    Article  Google Scholar 

  47. Insperger, T., Mann, B., Stépàn, G., and Bayly, P., 2003, Stability of Up-milling and Down-milling, Part 1: Alternative Analytical Methods, International Journal of Machine Tools and Manufacture, 43/1: 25–34.

    Article  Google Scholar 

  48. Mann, B., Insperger, T., Bayly, P., and Stépàn, G., 2003, Stability of Up-milling and Down-milling, Part 2: Experimental Verification, International Journal of Machine Tools and Manufacture, 43/1: 35–40.

    Article  Google Scholar 

  49. Campomanes, M. and Altintas, Y., 2003, An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions, Journal of Manufacturing Science and Engineering, 125/3: 416–422.

    Article  Google Scholar 

  50. Merdol, S. and Altintas, Y., 2004, Multi Frequency Solution of Chatter Stability for Low Immersion Milling, Journal of Manufacturing Science and Engineering, 126/3: 459–466.

    Article  Google Scholar 

  51. Bayly, P., Halley, J., Mann, B., and Davies, M., 2004, Stability of Interrupted Cutting by Temporal Finite Element Analysis, Journal of Manufacturing Science and Engineering, 125/2: 220–225.

    Google Scholar 

  52. Mann, B., Bayly, P, Davies, M., and Halley, J., 2004, Limit Cycles, Bifurcations, and Accuracy of the Milling Process, Journal of Sound and Vibration, 277/1-2: 31–48.

    Article  Google Scholar 

  53. Govekar, E., Gradišek, J., Kalveram, M., Insperger, T., Weinert, K., Stépàn, G., and Grabec, I., 2005, On Stability and Dynamics of Milling at Small Radial Immersion, Annals of the CIRP, 54/1: 357–362.

    Article  Google Scholar 

  54. Taylor, B. and Kuyatt, C., 1994, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297 1994 Edition.

    Google Scholar 

  55. International Standards Organization (ISO), 1993, Guide to the Expression of Uncertainty in Measurement (Corrected and Reprinted 1995).

    Google Scholar 

  56. American National Standards Institute, 1997, ANSI/NCSL Z540-2-1997, US Guide to the Expression of Uncertainty in Measurement.

    Google Scholar 

  57. Bevington, P. and Robinson, D., 1992, Data Reduction and Error Analysis for the Physical Sciences, 2nd Edition, WCB/McGraw-Hill, Boston, MA.

    Google Scholar 

  58. Altintas, Y. and Budak, E., 1995, Analytical Prediction of Stability Lobes in Milling, Annals of the CIRP, 44/1: 357–362.

    Article  Google Scholar 

  59. Duncan, G.S., Kurdi, M., Schmitz, T., and Snyder, J., 2006, Uncertainty Propagation for Selected Analytical Milling Stability Limit Analyses, Transactions of the NAMRI/SME, 34: 17–24.

    Google Scholar 

  60. Weisstein, E., “Incommensurate” from MathWorld – A Wolfram Web Resource, http://mathworld.wolfram.com/Incommensurate.html, accessed May, 2008.

  61. Weisstein, E., “Bifurcation” from MathWorld – A Wolfram Web Resource, http://mathworld.wolfram.com/Bifurcation.html, accessed May, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony L. Schmitz .

6.1 Solution Manual

Solution Manual

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmitz, T.L., Smith, K.S. (2009). Special Topics in Milling. In: Machining Dynamics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09645-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09645-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09644-5

  • Online ISBN: 978-0-387-09645-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics