Skip to main content
Book cover

Thrombin pp 19–46Cite as

Thrombin: To PAR or Not to PAR, and the Regulation of Inflammation

  • Chapter
  • First Online:
  • 604 Accesses

Abstract

Thrombin, a key “final common pathway” coagulation cascade proteinase, can be envisioned as one of the body’s main “sentries,” always on the lookout to be rendered active at sites of injury or other stress inducers, and always ready to generate a variety of signals that trigger the defense responses that comprise the process termed inflammation. Thrombin does this job in a clever way, using mechanisms that range from the generation of fibrin from fibrinogen, to the activation of G-protein-coupled receptors. The novel way that thrombin acts on human platelets, by cleaving and stimulating proteolytically activated receptors (PARs), has defined a new role not only for thrombin but also for proteinases in general, as hormone-like agents. Thus, thrombin can be seen as a prototype for a number of proteinases that can regulate cell function either by unmasking the receptor-activating tethered ligand sequence of PARs or by silencing PARs by removing the “tethered ligand,” thereby preventing activation by other proteinases such as thrombin. To play its role in inflammation, thrombin acts not only via the PARs but also by other mechanisms, such as the activation of metalloproteinases, the generation of active peptides from fibrin and by using non-catalytic mechanisms to trigger cell signalling. This chapter summarizes the several mechanisms (both PAR and non-PAR-related) that thrombin can use to regulate cell and tissue function, with a particular focus on the inflammatory response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam, E., Hansen, K. K., Astudillo Fernandez,O., Coulon, L., Bex, F., Duhant, X., Jaumotte, E., Hollenberg, M. D., Jacquet, A. 2006. The house dust mite allergen Der p 1, unlike Der p 3, stimulates the expression of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2-independent mechanism. J. Biol. Chem. 281: 6910–23.

    PubMed  CAS  Google Scholar 

  • Akiyama, H., Ikeda, K., Kondo, H., McGeer, P. L. 1992. Thrombin accumulation in brains of patients with Alzheimer’s disease. Neurosci. Lett. 146: 152–4.

    PubMed  CAS  Google Scholar 

  • Al-Ani, B., Hansen, K. K., Hollenberg, M. D. 2004. Proteinase-activated receptor-2: key role of amino-terminal dipeptide residues of the tethered ligand for receptor activation. Mol. Pharmacol. 65: 149–56.

    PubMed  CAS  Google Scholar 

  • Andrade-Gordon, P., Maryanoff, B. E., Derian, C. K., Zhang, H. C., Addo, M. F., Darrow, A. L., Eckardt, A. J., Hoekstra, W. J., McComsey, D. F., Oksenberg, D., Reynolds, E. E., Santulli, R. J., Scarborough, R. M., Smith, C. E., White, K. B. 1999. Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor. Proc. Natl. Acad. Sci. USA 96: 12257–62.

    PubMed  CAS  Google Scholar 

  • Asokananthan, N., Graham, P. T., Stewart, D. J., Bakker, A. J., Eidne, K. A., Thompson, P. J., Stewart, G. A. 2002. House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J. Immunol. 169: 4572–8.

    PubMed  CAS  Google Scholar 

  • Bar-Shavit, R., Kahn, A., Mudd, M. S., Wilner, G. D., Mann, K. G., Fenton, J. W., II. 1984. Localization of a chemotactic domain in human thrombin. Biochemistry 23: 397–400.

    PubMed  CAS  Google Scholar 

  • Bar-Shavit, R., Kahn, A. J., Mann, K. G., Wilner, G. D. 1986. Identification of a thrombin sequence with growth factor activity on macrophages. Proc. Natl. Acad. Sci. USA 83: 976–80.

    PubMed  CAS  Google Scholar 

  • Becker, C., Noldus, J., Diamandis, E., Lilja, H. 2001. The role of molecular forms of prostate-specific antigen (PSA or hK3) and of human glandular kallikrein 2 (hK2) in the diagnosis and monitoring of prostate cancer and in extra-prostatic disease. Crit. Rev. Clin. Lab. Sci. 38: 357–99.

    PubMed  CAS  Google Scholar 

  • Bhattacharjee, G., Ahamed, J., Pawlinski, R., Liu, C., Mackman, N., Ruf, W., Edgington, T. S. 2008. Factor Xa binding to annexin 2 mediates signal transduction via protease-activated receptor 1. Circ. Res. 102: 457–64.

    PubMed  CAS  Google Scholar 

  • Bizios, R., Lai, L., Fenton, J. W., II, Malik, A. B. 1986. Thrombin-induced chemotaxis and aggregation of neutrophils. J. Cell. Physiol. 128: 485–90.

    PubMed  CAS  Google Scholar 

  • Blackhart, B. D., Ruslim-Litrus, L., Lu, C. C., Alves, V. L., Teng, W., Scarborough, R. M., Reynolds, E. E., Oksenberg, D. 2000. Extracellular mutations of protease-activated receptor-1 result in differential activation by thrombin and thrombin receptor agonist peptide. Mol. Pharmacol. 58: 1178–87.

    PubMed  CAS  Google Scholar 

  • Blanc-Brude, O. P., Archer, F., Leoni, P., Derian, C., Bolsover, S., Laurent, G. J., Chambers, R. C. 2005. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation. Exp. Cell Res. 304: 16–27.

    CAS  Google Scholar 

  • Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S. R., Hofsteenge, J. 1989. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 8: 3467–75.

    PubMed  CAS  Google Scholar 

  • Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., Kuliopulos, A. 2005. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120: 303–13.

    PubMed  CAS  Google Scholar 

  • Borgono, C. A., Diamandis, E. P. 2004. The emerging roles of human tissue kallikreins in cancer. Nat. Rev. Cancer 4: 876–90.

    PubMed  CAS  Google Scholar 

  • Borgono, C. A., Michael, I. P., Diamandis, E. P. 2004. Human tissue kallikreins: physiologic roles and applications in cancer. Mol. Cancer Res. 2: 257–80.

    PubMed  CAS  Google Scholar 

  • Boven, L. A., Vergnolle, N., Henry, S. D., Silva, C., Imai, Y., Holden, J., Warren, K., Hollenberg, M. D., Power, C. 2003. Up-regulation of proteinase-activated receptor 1 expression in astrocytes during HIV encephalitis. J. Immunol. 170: 2638–46.

    PubMed  CAS  Google Scholar 

  • Camerer, E. 2007. Unchecked thrombin is bad news for troubled arteries. J. Clin. Invest. 117: 1486–9.

    PubMed  CAS  Google Scholar 

  • Carney, D. H., Cunningham, D. D. 1978. Role of specific cell surface receptors in thrombin-stimulated cell division. Cell 15: 1341–9.

    PubMed  CAS  Google Scholar 

  • Carney, D. H., Glenn, K. C., Cunningham, D. D. 1978. Conditions which affect initiation of animal cell division by trypsin and thrombin. J. Cell. Physiol. 95: 13–22.

    PubMed  CAS  Google Scholar 

  • Cenac, N., Andrews, C. N., Holzhausen, M., Chapman, K., Cottrell, G., Andrade-Gordon, P., Steinhoff, M., Barbara, G., Beck, P., Bunnett, N. W., Sharkey, K. A., Ferraz, J. G., Shaffer, E., Vergnolle, N. 2007. Role for protease activity in visceral pain in irritable bowel syndrome. J. Clin. Invest. 117: 636–47.

    PubMed  CAS  Google Scholar 

  • Chackalamannil, S., Xia, Y., Greenlee, W. J., Clasby, M., Doller, D., Tsai, H., Asberom, T., Czarniecki, M., Ahn, H. S., Boykow, G., Foster, C., Agans-Fantuzzi, J., Bryant, M., Lau, J., Chintala, M. 2005. Discovery of potent orally active thrombin receptor (protease activated receptor 1) antagonists as novel antithrombotic agents. J. Med. Chem. 48: 5884–7.

    PubMed  CAS  Google Scholar 

  • Chen, L. B., Buchanan, J. M. 1975. Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc. Natl. Acad. Sci. USA 72: 131–5.

    CAS  Google Scholar 

  • Conley, C. L. 1967. Some remarks on the reactions of platelets to thrombin. Thromb. Diath. Haemorrh. Suppl. 26: 107–12.

    PubMed  CAS  Google Scholar 

  • Coughlin, S. R. 2000. Thrombin signaling and protease-activated receptors. Nature 407: 258–64.

    PubMed  CAS  Google Scholar 

  • Coughlin, S. R. 2005. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 3: 1800–14.

    PubMed  CAS  Google Scholar 

  • Covic, L., Misra, M., Badar, J., Singh, C., Kuliopulos, A. 2002. Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat. Med. 8: 1161–5.

    PubMed  CAS  Google Scholar 

  • Cushman, D. W., Ondetti, M. A. 1999. Design of angiotensin converting enzyme inhibitors. Nat. Med. 5: 1110–1113.

    PubMed  CAS  Google Scholar 

  • Daub, H., Weiss, F. U., Wallasch, C., Ullrich, A. 1996. Role of transactivation of the EGF receptor in signaling by G-protein-coupled receptors. Nature 379: 557–60.

    PubMed  CAS  Google Scholar 

  • Daub, H., Wallasch, C., Lankenau, A., Herrlich, A., Ullrich, A. 1997. Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 16: 7032–44.

    PubMed  CAS  Google Scholar 

  • DeFea, K. 2008. Beta-arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction. Br. J. Pharmacol. 153 Suppl. 1: S298–S309.

    PubMed  CAS  Google Scholar 

  • de Garavilla, L., Vergnolle, N., Young, S. H., Ennes, H., Steinhoff, M., Ossovskaya, V. S., D’Andrea, M. R., Mayer, E. A., Wallace, J. L., Hollenberg, M. D., Andrade-Gordon, P., Bunnett, N. W. 2001. Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. Br. J. Pharmacol. 133: 975–87.

    PubMed  CAS  Google Scholar 

  • De Mey, J. G., Claeys, M., Vanhoutte, P. M. 1982. Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery. J. Pharmacol. Exp. Ther. 222: 166–73.

    PubMed  CAS  Google Scholar 

  • Derian, C. K., Damiano, B. P., Addo, M. F., Darrow, A. L., D’Andrea, M. R., Nedelman, M., Zhang, H. C., Maryanoff, B. E., Andrade-Gordon, P. 2003. Blockade of the thrombin receptor protease-activated receptor-1 with a small-molecule antagonist prevents thrombus formation and vascular occlusion in nonhuman primates. J. Pharmacol. Exp. Ther. 304: 855–61.

    PubMed  CAS  Google Scholar 

  • Dulon, S., Leduc, D., Cottrell, G. S., D’Alayer, J., Hansen, K. K., Bunnett, N. W., Hollenberg, M. D., Pidard, D., Chignard, M. 2005. Pseudomonas aeruginosa. elastase disables proteinase-activated receptor 2 in respiratory epithelial cells. Am. J. Respir. Cell Mol. Biol. 32: 411–419.

    PubMed  CAS  Google Scholar 

  • Ebeling, C., Lam, T., Gordon, J. R., Hollenberg, M. D., Vliagoftis, H. 2007. Proteinase-activated receptor-2 promotes allergic sensitization to an inhaled antigen through a TNF-mediated pathway. J. Immunol. 179: 2910–7.

    PubMed  CAS  Google Scholar 

  • Esch, T. R., Thomas, D. W. 1990. Ia-independent binding of peptide antigen to the T cell receptor. J. Immunol. 145: 3972–8.

    PubMed  CAS  Google Scholar 

  • Fischer, O. M., Giordano, S., Comoglio, P. M., Ullrich, A. 2004. Reactive oxygen species mediate Met receptor transactivation by G protein-coupled receptors and the epidermal growth factor receptor in human carcinoma cells. J. Biol. Chem. 279: 28970–8.

    PubMed  CAS  Google Scholar 

  • Glenn, K. C., Frost, G. H., Bergmann, J. S., Carney, D. H. 1988. Synthetic peptides bind to high-affinity thrombin receptors and modulate thrombin mitogenesis. Pept. Res. 1: 65–73.

    PubMed  CAS  Google Scholar 

  • Gurwitz, D., Cunningham, D. D. 1988. Thrombin modulates and reverses neuroblastoma neurite outgrowth. Proc. Natl. Acad. Sci. USA 85: 3440–4.

    PubMed  CAS  Google Scholar 

  • Hansen, K. K., Sherman, P. M., Cellars, L., Andrade-Gordon, P., Pan, Z., Baruch, A., Wallace, J. L., Hollenberg, M. D., Vergnolle, N. 2005. A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc. Natl. Acad. Sci. USA 102: 8363–8.

    PubMed  CAS  Google Scholar 

  • Haver, V. M., Namm, D. H. 1984. Characterization of the thrombin-induced contraction of vascular smooth muscle. Blood Vessels 21: 53–63.

    PubMed  CAS  Google Scholar 

  • Hawkins, J. V., Emmel, E. L., Feuer, J. J., Nedelman, M. A., Harvey, C. J., Klein, H. J., Rozmiarek, H., Kennedy, A. R., Lichtenstein, G. R., Billings, P. C. 1997. Protease activity in a hapten-induced model of ulcerative colitis in rats. Dig. Dis. Sci. 42: 1969–80.

    PubMed  CAS  Google Scholar 

  • Hollenberg, M. D., Compton, S. J. 2002. International Union of Pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol. Rev. 54: 203–17.

    CAS  Google Scholar 

  • Hollenberg, M. D., Saifeddine, M. 2001. Proteinase-activated receptor 4 (PAR4): activation and inhibition of rat platelet aggregation by PAR4-derived peptides. Can. J. Physiol. Pharmacol. 79: 439–42.

    PubMed  CAS  Google Scholar 

  • Hollenberg, M. D., Laniyonu, A. A., Saifeddine, M., Moore, G. J. 1993. Role of the amino- and carboxyl-terminal domains of thrombin receptor-derived polypeptides in biological activity in vascular endothelium and gastric smooth muscle: evidence for receptor subtypes. Mol. Pharmacol. 43: 921–30.

    PubMed  CAS  Google Scholar 

  • Hollenberg, M. D., Mokashi, S., Leblond, L., DiMaio, J. 1996. Synergistic actions of a thrombin-derived synthetic peptide and a thrombin receptor-activating peptide in stimulating fibroblast mitogenesis. J. Cell. Physiol. 169: 491–6.

    PubMed  CAS  Google Scholar 

  • Holzhausen, M., Spolidorio, L. C., Ellen, R. P., Jobin, M. C., Steinhoff, M., Andrade-Gordon, P., Vergnolle, N. 2006. Protease-activated receptor-2 activation: a major role in the pathogenesis of Porphyromonas gingivalis infection. Am. J. Pathol. 168: 1189–99.

    PubMed  CAS  Google Scholar 

  • Houle, S., Papez, M. D., Ferazzini, M., Hollenberg, M. D., Vergnolle, N. 2005. Neutrophils and the kallikrein-kinin system in proteinase-activated receptor 4-mediated inflammation in rodents. Br. J. Pharmacol. 146: 670–8.

    PubMed  CAS  Google Scholar 

  • Ishihara, H., Connolly, A. J., Zeng, D., Kahn, M. L., Zheng, Y. W., Timmons, C., Tram, T., Coughlin, S. R. 1997. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386: 502–6.

    PubMed  CAS  Google Scholar 

  • Kahn, M. L., Zheng, Y. W., Huang, W., Bigornia, V., Zeng, D., Moff, S., Farese, R. V., Jr., Tam, C., Coughlin, S. R. 1998. A dual thrombin receptor system for platelet activation. Nature 394: 690–4.

    PubMed  CAS  Google Scholar 

  • Kawabata, A., Saifeddine, M., Al-Ani, B., Leblond, L., Hollenberg, M. D. 1999. Evaluation of proteinase-activated receptor-1 (PAR1) agonists and antagonists using a cultured cell receptor desensitization assay: activation of PAR2 by PAR1-targeted ligands. J. Pharmacol. Exp. Ther. 288: 358–70.

    PubMed  CAS  Google Scholar 

  • Kay, A. B., Pepper, D. S., Ewart, M. R. 1973. Generation of chemotactic activity for leukocytes by the action of thrombin on human fibrinogen. Nat. New Biol. 243: 56–7.

    PubMed  CAS  Google Scholar 

  • Kay, A. B., Pepper, D. S., McKenzie, R. 1974. The identification of fibrinopeptide B as a chemotactic agent derived from human fibrinogen. Br. J. Haematol. 27: 669–77.

    PubMed  CAS  Google Scholar 

  • Kelly, A. B., Maraganore, J. M., Bourdon, P., Hanson, S. R., Harker, L. A. 1992. Antithrombotic effects of synthetic peptides targeting various functional domains of thrombin. Proc. Natl. Acad. Sci. USA 89: 6040–4.

    PubMed  CAS  Google Scholar 

  • Kimura, M., Andersen, T. T., Fenton, J. W., II, Bahou, W. F., Aviv, A. 1996. Plasmin–platelet interaction involves cleavage of functional thrombin receptor. Am. J. Physiol. 271: C54–C60.

    PubMed  CAS  Google Scholar 

  • Kinlough-Rathbone, R. L., Rand, M. L., Packham, M. A. 1993. Rabbit and rat platelets do not respond to thrombin receptor peptides that activate human platelets. Blood 82: 103–6.

    PubMed  CAS  Google Scholar 

  • Knecht, W., Cottrell, G. S., Amadesi, S., Mohlin, J., Skaregarde, A., Gedda, K., Peterson, A., Chapman, K., Hollenberg, M. D., Vergnolle, N., Bunnett, N. W. 2007. Trypsin IV or mesotrypsin and p23 cleave protease-activated receptors 1 and 2 to induce inflammation and hyperalgesia. J. Biol. Chem. 282: 26089–100.

    PubMed  CAS  Google Scholar 

  • Kong, W., McConalogue, K., Khitin, L. M., Hollenberg, M. D., Payan, D. G., Bohm, S. K., Bunnett, N. W. 1997. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc. Natl. Acad. Sci. USA 94: 8884–9.

    PubMed  CAS  Google Scholar 

  • Kranzhofer, R., Clinton, S. K., Ishii, K., Coughlin, S. R., Fenton, J. W., II,Libby, P. 1996. Thrombin potently stimulates cytokine production in human vascular smooth muscle cells but not in mononuclear phagocytes. Circ. Res. 79: 286–94.

    PubMed  CAS  Google Scholar 

  • Kuliopulos, A., Covic, L., Seeley, S. K., Sheridan, P. J., Helin, J., Costello, C. E. 1999. Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry 38: 4572–85.

    PubMed  CAS  Google Scholar 

  • Lafleur, M. A., Hollenberg, M. D., Atkinson, S. J., Knauper, V., Murphy, G., Edwards, D. R. 2001. Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species. Biochem. J. 357: 107–15.

    PubMed  CAS  Google Scholar 

  • Laumonnier, Y., Syrovets, T., Burysek, L., Simmet, T. 2006. Identification of the annexin A2 heterotetramer as a receptor for the plasmin-induced signaling in human peripheral monocytes. Blood 107: 3342–9.

    PubMed  CAS  Google Scholar 

  • Leger, A. J., Jacques, S. L., Badar, J., Kaneider, N. C., Derian, C. K., Andrade-Gordon, P., Covic, L., Kuliopulos, A. 2006. Blocking the protease-activated receptor 1–4 heterodimer in platelet-mediated thrombosis. Circulation 113: 1244–54.

    PubMed  CAS  Google Scholar 

  • Li, Q., Laumonnier, Y., Syrovets, T., Simmet, T. 2007. Plasmin triggers cytokine induction in human monocyte-derived macrophages. Arterioscler. Thromb. Vasc. Biol. 27: 1383–9.

    PubMed  Google Scholar 

  • López-Otín, C., Matrisian, L. M. 2007. Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer 7: 800–8.

    PubMed  Google Scholar 

  • Lourbakos, A., Potempa, J., Travis, J., D’Andrea, M. R., Andrade-Gordon, P., Santulli, R., Mackie, E. J., Pike, R. N. 2001. Arginine-specific protease from Porphyromonas gingivalis. activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion Infect. Immun. 69: 5121–30.

    PubMed  CAS  Google Scholar 

  • Ma, L., Perini, R., McKnight, W., Dicay, M., Klein, A., Hollenberg, M. D., Wallace, J. L. 2005. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc. Natl. Acad. Sci. USA 102: 216–20.

    PubMed  CAS  Google Scholar 

  • Macfarlane, S. R., Seatter, M. J., Kanke, T., Hunter, G. D., Plevin, R. 2001. Proteinase-activated receptors. Pharmacol. Rev. 53: 245–82.

    PubMed  CAS  Google Scholar 

  • Malik, A. B., Fenton, J. W., II. 1992. Thrombin-mediated increase in vascular endothelial permeability. Semin. Thromb. Hemost. 18: 193–9.

    PubMed  CAS  Google Scholar 

  • Maryanoff, B. E., Zhang, H. C., Andrade-Gordon, P., Derian, C. K. 2003. Discovery of potent peptide-mimetic antagonists for the human thrombin receptor, protease-activated receptor-1 (PAR-1). Curr. Med. Chem. Cardiovasc. Hematol. Agents 1: 13–36.

    PubMed  CAS  Google Scholar 

  • McKenzie, R., Pepper, D. S., Kay, A. B. 1975. The generation of chemotactic activity for human leukocytes by the action of plasmin on human fibrinogen. Thromb. Res. 6: 1–8.

    PubMed  CAS  Google Scholar 

  • McLaughlin, J. N., Shen, L., Holinstat, M., Brooks, J. D., Dibenedetto, E., Hamm, H. E. 2005. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J. Biol. Chem. 280: 25048–59.

    PubMed  CAS  Google Scholar 

  • McLaughlin, J. N., Patterson, M. M., Malik, A. B. 2007. Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc. Natl. Acad. Sci. USA 104: 5662–7.

    PubMed  CAS  Google Scholar 

  • Nystedt, S., Emilsson, K., Wahlestedt, C., Sundelin, J. 1994. Molecular cloning of a potential proteinase activated receptor. Proc. Natl. Acad. Sci. USA 91: 9208–12.

    PubMed  CAS  Google Scholar 

  • Oikonomopoulou, K., Hansen, K. K., Saifeddine, M., Tea, I., Blaber, M., Blaber, S. I., Scarisbrick, I., Andrade-Gordon, P., Cottrell, G. S., Bunnett, N. W., Diamandis, E. P., Hollenberg, M. D. 2006a. Proteinase-activated receptors, targets for kallikrein signaling. J. Biol. Chem. 281: 32095–112.

    CAS  Google Scholar 

  • Oikonomopoulou, K., Hansen, K. K., Saifeddine, M., Vergnolle, N., Tea, I., Blaber, M., Blaber, S. I., Scarisbrick, I., Diamandis, E. P., Hollenberg, M. D. 2006b. Kallikrein-mediated cell signaling: targeting proteinase-activated receptors (PARs). Biol. Chem. 387: 817–24.

    CAS  Google Scholar 

  • Oikonomopoulou, K., Hansen, K. K., Amos, B. A., Hollenberg, M. D., Diamandis, E. P. 2008. Immunofluorometric activity-based probe analysis of active KLK6 in biological fluids. Biol. Chem. 389: 747–56.

    PubMed  CAS  Google Scholar 

  • Ossovskaya, V. S., Bunnett, N. W. 2004. Protease-activated receptors: contribution to physiology and disease. Physiol. Rev. 84: 579–621.

    PubMed  CAS  Google Scholar 

  • Page, K., Strunk, V. S., Hershenson, M. B. 2003. Cockroach proteases increase IL-8 expression in human bronchial epithelial cells via activation of protease-activated receptor (PAR)-2 and extracellular-signal-regulated kinase. J. Allergy Clin. Immunol. 112: 1112–18.

    PubMed  CAS  Google Scholar 

  • Page, K., Lierl, K. M., Herman, N., Wills-Karp, M. 2007. Differences in susceptibility to German cockroach frass and its associated proteases in induced allergic inflammation in mice. Respir. Res. 8: 91.

    PubMed  Google Scholar 

  • Perdue, J. F., Lubenskyi, W., Kivity, E., Sonder, S. A., Fenton, J. W., II. 1981. Protease mitogenic response of chick embryo fibroblasts and receptor binding/processing of human alpha-thrombin. J. Biol. Chem. 256: 2767–76.

    PubMed  CAS  Google Scholar 

  • Pike, C. J., Vaughan, P. J., Cunningham, D. D., Cotman, C. W. 1996. Thrombin attenuates neuronal cell death and modulates astrocyte reactivity induced by beta-amyloid in vitro. J. Neurochem. 66: 1374–82.

    PubMed  CAS  Google Scholar 

  • Quinton, T. M., Kim, S., Derian, C. K., Jin, J., Kunapuli, S. P. 2004. Plasmin-mediated activation of platelets occurs by cleavage of protease-activated receptor 4. J. Biol. Chem. 279: 18434–9.

    PubMed  CAS  Google Scholar 

  • Ramachandran, R., Hollenberg, M. D. 2008. Proteinases and signaling: pathophysiological and therapeutic implications via PARs and more. Br. J. Pharmacol. 153 Suppl 1: S263–82.

    PubMed  CAS  Google Scholar 

  • Ramachandran, R., Sadofsky, L. R., Xiao, Y., Botham, A., Cowen, M., Morice, A. H., Compton, S. J. 2007. Inflammatory mediators modulate thrombin and cathepsin-G signaling in human bronchial fibroblasts by inducing expression of proteinase-activated receptor-4. Am. J. Physiol. Lung Cell. Mol. Physiol. 292: L788–98.

    PubMed  CAS  Google Scholar 

  • Rasmussen, U. B., Vouret-Craviari, V., Jallat, S., Schlesinger, Y., Pages, G., Pavirani, A., Lecocq, J. P., Pouyssegur, J., Van Obberghen-Schilling, E. 1991. cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+. mobilization FEBS Lett. 288: 123–8.

    PubMed  CAS  Google Scholar 

  • Razin, E., Marx, G. 1984. Thrombin-induced degranulation of cultured bone marrow-derived mast cells. J. Immunol. 133: 3282–5.

    PubMed  CAS  Google Scholar 

  • Riewald, M., Petrovan, R. J., Donner, A., Mueller, B. M., Ruf, W. 2002. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296: 1880–2.

    PubMed  CAS  Google Scholar 

  • Ritchie, E., Saka, M., Mackenzie, C., Drummond, R., Wheeler-Jones, C., Kanke, T., Plevin, R. 2007. Cytokine upregulation of proteinase-activated-receptors 2 and 4 expression mediated by p38 MAP kinase and inhibitory kappa B kinase beta in human endothelial cells. Br. J. Pharmacol. 150: 1044–54.

    PubMed  CAS  Google Scholar 

  • Ruf, W., Dorfleutner, A., Riewald, M. 2003. Specificity of coagulation factor signaling. J. Thromb. Haemost. 1: 1495–503.

    PubMed  CAS  Google Scholar 

  • Rydel, T. J., Ravichandran, K. G., Tulinsky, A., Bode, W., Huber, R., Roitsch, C., Fenton, J. W., II. 1990. The structure of a complex of recombinant hirudin and human alpha-thrombin. Science 249: 277–80.

    PubMed  CAS  Google Scholar 

  • Saldeen, K., Christie, N., Nelson, W. R., Movat, H. Z. 1985. Effect of a fibrin(ogen)-derived vasoactive peptide on polymorphonuclear leukocyte emigration. Thromb. Res. 37: 85–9.

    PubMed  CAS  Google Scholar 

  • Schmid, H. J., Jackson, D. P., Conley, C. L. 1962. Mechanism of action of thrombin on platelets. J. Clin. Invest. 41: 543–53.

    PubMed  CAS  Google Scholar 

  • Schmidt, A. 1872. Neue Untersuchungen über die Faserstoffgerinnung. Pflügers Archiv Eur. J. Physiol. 6: 413–538 (link to PDF of article: http://dx.doi.org/10.1007/BF01612263

  • Schmidt, A. 1892. Zur Blutlehre. Leipzig, Vogel.

    Google Scholar 

  • Senior, R. M., Skogen, W. F., Griffin, G. L., Wilner, G. D. 1986. Effects of fibrinogen derivatives upon the inflammatory response.Studies with human fibrinopeptide. B. J. Clin. Invest. 77: 1014–9.

    CAS  Google Scholar 

  • Shapiro, M. J., Weiss, E. J., Faruqi, T. R., Coughlin, S. R. 2000. Protease-activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. J. Biol. Chem. 275: 25216–21.

    PubMed  CAS  Google Scholar 

  • Shermer, R. W., Mason, R. G., Wagner, R. H., Brinkhous, K. M. 1961. Studies on thrombin-induced platelet agglutination. J. Exp. Med. 114: 905–20.

    PubMed  CAS  Google Scholar 

  • Shpacovitch, V., Feld, M., Hollenberg, M. D., Luger, T. A., Steinhoff, M. 2008. Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J. Leukoc. Biol. 83: 1309–1322.

    PubMed  CAS  Google Scholar 

  • Simonet, S., Bonhomme, E., Laubie, M., Thurieau, C., Fauchere, J. L., Verbeuren, T. J. 1992. Venous and arterial endothelial cells respond differently to thrombin and its endogenous receptor agonist. Eur. J. Pharmacol. 216: 135–7.

    PubMed  CAS  Google Scholar 

  • Slofstra, S. H., Bijlsma, M. F., Groot, A. P., Reitsma, P. H., Lindhout, T., ten Cate, H., Spek, C. A. 2007. Protease-activated receptor-4 inhibition protects from multiorgan failure in a murine model of systemic inflammation. Blood 110: 3176–82.

    PubMed  CAS  Google Scholar 

  • Smirnova, I. V., Ma, J. Y., Citron, B. A., Ratzlaff, K. T., Gregory, E. J., Akaaboune, M., Festoff, B. W. 1996. Neural thrombin and protease nexin I kinetics after murine peripheral nerve injury. J. Neurochem. 67: 2188–99.

    PubMed  CAS  Google Scholar 

  • Stankova, J., Rola-Pleszczynski, M., D’Orleans-Juste, P. 1995. Endothelin 1 and thrombin synergistically stimulate IL-6 mRNA expression and protein production in human umbilical vein endothelial cells. J. Cardiovasc. Pharmacol.26(Suppl.3):S505–7.

    PubMed  CAS  Google Scholar 

  • Steinhoff, M., Buddenkotte, J., Shpacovitch, V., Rattenholl, A., Moormann, C., Vergnolle, N., Luger, T. A., Hollenberg, M. D. 2005. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr. Rev. 26: 1–43.

    PubMed  CAS  Google Scholar 

  • Strande, J. L., Hsu, A., Su, J., Fu, X., Gross, G. J., Baker, J. E. 2008. Inhibiting protease-activated receptor 4 limits myocardial ischemia/reperfusion injury in rat hearts by unmasking adenosine signaling. J. Pharmacol. Exp. Ther. 324: 1045–54.

    PubMed  CAS  Google Scholar 

  • Sueishi, K., Nanno, S., Tanaka, K. 1981. Permeability enhancing and chemotactic activities of lower molecular weight degradation products of human fibrinogen. Thromb. Haemost. 45: 90–4.

    PubMed  CAS  Google Scholar 

  • Sun, G., Stacey, M. A., Schmidt, M., Mori, L., Mattoli, S. 2001. Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J. Immunol. 167: 1014–21.

    PubMed  CAS  Google Scholar 

  • Suo, Z., Wu, M., Ameenuddin, S., Anderson, H. E., Zoloty, J. E., Citron, B. A., Andrade-Gordon, P., Festoff, B. W. 2002. Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J. Neurochem. 80: 655–66.

    PubMed  CAS  Google Scholar 

  • Suo, Z., Wu, M., Citron, B. A., Gao, C., Festoff, B. W. 2003. Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation. J. Biol. Chem. 278: 31177–83.

    PubMed  CAS  Google Scholar 

  • Takeuchi, T., Harris, J. L., Huang, W., Yan, K. W., Coughlin, S. R., Craik, C. S. 2000. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem. 275: 26333–42.

    PubMed  CAS  Google Scholar 

  • Toothill, V. J., Van Mourik, J. A., Niewenhuis, H. K., Metzelaar, M. J., Pearson, J. D. 1990. Characterization of the enhanced adhesion of neutrophil leukocytes to thrombin-stimulated endothelial cells. J. Immunol. 145: 283–91.

    PubMed  CAS  Google Scholar 

  • Ueno, A., Murakami, K., Yamanouchi, K., Watanabe, M., Kondo, T. 1996. Thrombin stimulates production of interleukin-8 in human umbilical vein endothelial cells. Immunology 88: 76–81.

    PubMed  CAS  Google Scholar 

  • Van Obberghen-Schilling, E., Pouysségur, J. 1985. Affinity labeling of high-affinity alpha-thrombin binding sites on the surface of hamster fibroblasts. Biochim. Biophys. Acta 847: 335–43.

    PubMed  CAS  Google Scholar 

  • Vergnolle, N. 2005. Clinical relevance of proteinase activated receptors (PARs) in the gut. Gut 54: 867–74.

    PubMed  CAS  Google Scholar 

  • Vergnolle, N., Hollenberg, M. D., Wallace, J. L. 1999. Pro- and anti-inflammatory actions of thrombin: a distinct role for proteinase-activated receptor-1 (PAR1). Br. J. Pharmacol. 126: 1262–8.

    PubMed  CAS  Google Scholar 

  • Vergnolle, N., Derian, C. K., D’Andrea, M. R., Steinhoff, M., Andrade-Gordon, P. 2002. Characterization of thrombin-induced leukocyte rolling and adherence: a potential proinflammatory role for proteinase-activated receptor-4. J. Immunol. 169: 1467–73.

    PubMed  CAS  Google Scholar 

  • Versteeg, H. H., Ruf, W. 2006. Emerging insights in tissue factor-dependent signaling events. Semin. Thromb. Hemost. 32: 24–32.

    PubMed  CAS  Google Scholar 

  • Voss, B., McLaughlin, J. N., Holinstat, M., Zent, R., Hamm, H. E. 2007. PAR1, but not PAR4, activates human platelets through a Gi/o/phosphoinositide-3 kinase signaling axis. Mol. Pharmacol. 71: 1399–406.

    PubMed  CAS  Google Scholar 

  • Vouret-Craviari, V., Van Obberghen-Schilling, E., Rasmussen, U. B., Pavirani, A., Lecocq, J. P., Pouyssegur, J. 1992. Synthetic alpha-thrombin receptor peptides activate G protein-coupled signaling pathways but are unable to induce mitogenesis. Mol. Biol. Cell 3: 95–102.

    PubMed  CAS  Google Scholar 

  • Vouret-Craviari, V., Van Obberghen-Schilling, E., Scimeca, J. C., Van Obberghen, E., Pouyssegur, J. 1993. Differential activation of p44mapk (ERK1) by alpha-thrombin and thrombin-receptor peptide agonist. Biochem. J. 289: 209–14.

    PubMed  CAS  Google Scholar 

  • Vu, T. K., Wheaton, V. I., Hung, D. T., Charo, I., Coughlin, S. R. 1991. Domains specifying thrombin–receptor interaction. Nature 353: 674–7.

    PubMed  CAS  Google Scholar 

  • Walz, D. A., Anderson, G. F., Ciaglowski, R. E., Aiken, M., Fenton, J. W., II. 1985. Thrombin-elicited contractile responses of aortic smooth muscle. Proc. Soc. Exp. Biol. Med. 180: 518–26.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Luo, W., Wartmann, T., Halangk, W., Sahin-Toth, M., Reiser, G. 2006. Mesotrypsin, a brain trypsin, activates selectively proteinase-activated receptor-1, but not proteinase-activated receptor-2, in rat astrocytes. J. Neurochem. 99: 759–69.

    PubMed  CAS  Google Scholar 

  • Xu, W. F., Andersen, H., Whitmore, T. E., Presnell, S. R., Yee, D. P., Ching, A., Gilbert, T., Davie, E. W., Foster, D. C. 1998. Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci. USA 95: 6642–6.

    PubMed  CAS  Google Scholar 

  • Yang, L., Bae, J. S., Manithody, C., Rezaie, A. R. 2007. Identification of a specific exosite on activated protein C for interaction with protease-activated receptor 1. J. Biol. Chem. 282: 25493–500.

    PubMed  CAS  Google Scholar 

  • Zhang, H. C., Derian, C. K., Andrade-Gordon, P., Hoekstra, W. J., McComsey, D. F., White, K. B., Poulter, B. L., Addo, M. F., Cheung, W. M., Damiano, B. P., Oksenberg, D., Reynolds, E. E., Pandey, A., Scarborough, R. M., Maryanoff, B. E. 2001. Discovery and optimization of a novel series of thrombin receptor (PAR-1) antagonists: potent, selective peptide mimetics based on indole and indazole templates. J. Med. Chem. 44: 1021–4.

    PubMed  CAS  Google Scholar 

  • Zoudilova, M., Kumar, P., Ge, L., Wang, P., Bokoch, G. M., DeFea, K. A. 2007. Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J. Biol. Chem. 282: 20634–46.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The studies from the authors’ laboratory cited in this article are supported in part by grants from the Canadian Institutes of Health Research (CIHR) and by National Institutes of Health (NIH) (grant MH075683). RR is the recipient of a Canadian Association of Gastroenterology/CIHR/Ortho-Jensen postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ramachandran, R., El-Daly, M., Saifeddine, M., Hollenberg*, M.D. (2009). Thrombin: To PAR or Not to PAR, and the Regulation of Inflammation. In: Maragoudakis, M., Tsopanoglou, N. (eds) Thrombin. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09637-7_2

Download citation

Publish with us

Policies and ethics