GABA is the Main Neurotransmitter Released from Mossy Fiber Terminals in the Developing Rat Hippocampus

  • Victoria F. Safiulina
  • Majid H. Mohajerani
  • Sudhir Sivakumaran
  • Enrico CherubiniEmail author


Early in postnatal development, correlated activity in the hippocampus is characterized by giant depolarizing potentials (GDPs). GDPs are generated by the interplay between glutamate and GABA, which in the immediate postnatal period is depolarizing and excitatory. Here, we review some recent data obtained in our laboratory concerning neuronal signaling at immature MF connections. MF responses were identified on the basis of their strong paired-pulse facilitation, short-term frequency-dependent facilitation and sensitivity to group III mGluR agonist L-AP4. Unlike adulthood, during the first week of postnatal life minimal stimulation of MF evoked responses that were potentiated by flurazepam and abolished by picrotoxin indicating that they were GABAergic. In addition, using a pairing procedure we found that GDPs and associated calcium transients act as coincident detectors for enhancing synaptic efficacy at poorly developed MF-CA3 and MF-interneurons connections. This may be crucial for synaptogenesis and for establishing the adult neuronal circuit.


Granule Cell GABAA Receptor Mossy Fiber GABAergic Interneuron Principal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid


Central Nervous System




D-(-)-2-Amino-5-phosphonopentanoic acid






a high-affinity GABA plasma membrane transporter


γ-Amino-butyric acid


glutamic acid decarboxylase


Giant Depolarizing Potentials


inhibitory postsynaptic current


neuronal Potassium-Chloride cotransporter


2-amino-4-phosphonobutyric acid


Mossy fibers


metabotropic glutamate receptors


Sodium, Potassium Chloride cotransporter




postnatal day


Vesicular GABA Transporter



The authors are grateful to Drs. A. Kasyanov, G. Fattorini and F. Conti for participating in some experiments. The original research work was supported by grants from Ministero Istruzione, Universita’, Ricerca (MIUR, Italy) and the European Union.


  1. Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386–3403PubMedGoogle Scholar
  2. Allen C, Stevens CF (1994) An evaluation of causes for unreliability of synaptic transmission. Proc Natl Acad Sci U S A 91:10380–10383PubMedCrossRefGoogle Scholar
  3. Amaral DG, Dent JA (1981) Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol 195:51–86PubMedCrossRefGoogle Scholar
  4. Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nature Rev Neurosci 3:728–739CrossRefGoogle Scholar
  5. Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol (Lond) 416:303–325Google Scholar
  6. Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997) GABAA, NMDA and AMPA receptors: a developmentally regulated “menage a trois”. Trends Neurosci 20:523–529PubMedCrossRefGoogle Scholar
  7. Bergersen L, Ruiz A, Bjaalie JG, Kullmann DM, Gundersen V (2003) GABA and GABAA receptors at hippocampal mossy fibre synapses. Eur J Neurosci 18:931–941PubMedCrossRefGoogle Scholar
  8. Blatow M, Caputi A, Burnashev N, Monyer H, Rozov A (2003) Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron 38:79–88PubMedCrossRefGoogle Scholar
  9. Buzsaki G, Draguhn A. (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929PubMedCrossRefGoogle Scholar
  10. Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, Storm-Mathisen J (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 8:9733–9750Google Scholar
  11. Chen G, Trombley PQ, van den Pol AN (1996) Excitatory actions of GABA in developing rat hypothalamic neurones. J Physiol 494:451–464PubMedGoogle Scholar
  12. Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14:515–519PubMedCrossRefGoogle Scholar
  13. Cherubini E and Conti F (2001) Generating diversity at GABAergic synapses. Trends Neurosci 24:155–162PubMedCrossRefGoogle Scholar
  14. Dammerman RS, Flint AC, Noctor S, Kriegstein AR (2000) An excitatory GABAergic plexus in developing neocortical layer 1. J Neurophysiol 84:428–434PubMedGoogle Scholar
  15. Demarque M, Represa A, Becq H, Khalilov I, Ben-Ari Y and Aniksztejn L (2002) Paracrine intercellular communication by a Ca2+ – and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron 36:1051–1061PubMedCrossRefGoogle Scholar
  16. Doherty JJ, Alagarsamy S, Bough KJ, Conn PJ, Dingledine R, Mott DD (2004) Metabotropic glutamate receptors modulate feedback inhibition in a developmentally regulated manner in rat dentate gyrus. J Physiol 561:395–401PubMedCrossRefGoogle Scholar
  17. Dupuy ST, Houser CR (1997) Developmental changes in GABA neurons of the rat dentate gyrus: an in situ hybridization and birthdating study. J Comp Neurol 389:402–418PubMedCrossRefGoogle Scholar
  18. Eilers J, Plant TD, Marandi N, Konnerth A (2001) GABA-mediated Ca2+ signalling in developing rat cerebellar Purkinje neurones. J Physiol 536:429–437PubMedCrossRefGoogle Scholar
  19. Feller MB, Butts DA, Aaron HL, Rokhsar DS, Shatz CJ (1997) Dynamic processes shape spatiotemporal properties of retinal waves. Neuron 19:293–306PubMedCrossRefGoogle Scholar
  20. Frotscher M, Jonas P, Sloviter RS (2006) Synapses formed by normal and abnormal hippocampal mossy fibers. Cell Tissue Res 326:361–367PubMedCrossRefGoogle Scholar
  21. Garaschuk O, Hanse E, Konnerth A (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol (London) 507:219–236CrossRefGoogle Scholar
  22. Gasparini S, Saviane C, Voronin LL, Cherubini E (2000) Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release? Proc Natl Acad Sci U S A 97:9741–9746PubMedCrossRefGoogle Scholar
  23. Gillespie DC, Kim G, Kandler K (2005) Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci 8:332–338PubMedCrossRefGoogle Scholar
  24. Gutierrez R (2005) The dual glutamatergic-GABAergic phenotype of hippocampal granule cells. Trends Neurosci 28:297–303PubMedCrossRefGoogle Scholar
  25. Gutierrez R, Heinemann U (2001) Kindling induces transient fast inhibition in the dentate gyrus--CA3 projection. Eur J Neurosci 13:1371–1379PubMedCrossRefGoogle Scholar
  26. Gutierrez R, Romo-Parra H, Maqueda J, Vivar C, Ramirez M, Morales MA, Lamas M (2003) Plasticity of the GABAergic phenotype of the “glutamatergic” granule cells of the rat dentate gyrus. J Neurosci 23:5594–5598PubMedGoogle Scholar
  27. Henze DA, Urban NN, Barrionuevo G (2000) The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 98:407–427PubMedCrossRefGoogle Scholar
  28. Hirata K, Sawada S, Yamamoto C (1992) Quantal analysis of suppressing action of baclofen on mossy fiber synapses in guinea pig hippocampus. Brain Res 578:33–40PubMedCrossRefGoogle Scholar
  29. Hosokawa Y, Sciancalepore M, Stratta F, Martina M and Cherubini E (1994) Developmental changes in spontaneous GABAA-mediated synaptic events in rat hippocampal CA3 neurones. Eur J Neurosci 6:805–813PubMedCrossRefGoogle Scholar
  30. Jonas P, Major G, Sakmann B (1993) Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J Physiol 472:615–663PubMedGoogle Scholar
  31. Jonas P, Bischofberger J, Sandkuhler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281:419–424PubMedCrossRefGoogle Scholar
  32. Kamiya H, Shinozaki H, Yamamoto C (1996) Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J Physiol 493:447–455PubMedGoogle Scholar
  33. Kasyanov AM, Safiulina VF, Voronin LL, Cherubini E (2004) GABA-mediated giant depolarizing potentials as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus. Proc Natl Acad Sci USA 101:3967–3972PubMedCrossRefGoogle Scholar
  34. Lamas M, Gomez-Lira G, Gutierrez R (2001) Vesicular GABA transporter mRNA expression in the dentate gyrus and in mossy fiber synaptosomes. Brain Res Mol Brain Res 93:209–214PubMedCrossRefGoogle Scholar
  35. Lanthorn TH, Ganong AH, Cotman CW (1984) 2-Amino-4-phosphonobutyrate selectively blocks mossy fiber-CA3 responses in guinea pig but not rat hippocampus. Brain Res 290:174–178PubMedCrossRefGoogle Scholar
  36. Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R (1997) Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 18:243–255PubMedCrossRefGoogle Scholar
  37. Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y and Buzsaki G (2002) Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296:2049–2052PubMedCrossRefGoogle Scholar
  38. Maric D, Liu QY, Maric I, Chaudry S, Chang YH, Smith SV, Sieghart W, Fritschy JM, Barker JL (2001) GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl- channels. J Neurosci 21:2343–2360PubMedGoogle Scholar
  39. Menendez de la Prida L, Sanchez-Andres JV (1999) Nonlinear frequency-dependent synchronization in the developing hippocampus. J Neurophysiol 82:202–208Google Scholar
  40. Menendez de la Prida L, Sanchez-Andres JV (2000) Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism. Neuroscience 97:227–241CrossRefGoogle Scholar
  41. Menendez de la Prida LM, Huberfeld G, Cohen I, Miles R (2006) Threshold behavior in the initiation of hippocampal population bursts. Neuron 49:131–142CrossRefGoogle Scholar
  42. Miles R, Wong RKS (1987) Latent synaptic pathways revealed after tetanic stimulation in the hippocampus. Nature 329:724–726PubMedCrossRefGoogle Scholar
  43. Mohajerani MH and Cherubini E (2005) Spontaneous recurrent network activity in organotypic rat hippocampal slices. Eur J Neurosci 22:107–118PubMedCrossRefGoogle Scholar
  44. Mohajerani MH, Sivakumaran S, Zacchi P, Aguilera P, Cherubini E (2007) Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3–CA1 connections in the hippocampus. Proc Natl Acad Sci U S A 104:13176–13181PubMedCrossRefGoogle Scholar
  45. Moore KA, Nicoll RA, Schmitz D (2003) Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc Natl Acad Sci U S A 100:14397–14402PubMedCrossRefGoogle Scholar
  46. Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876PubMedCrossRefGoogle Scholar
  47. O’Donovan MJ (1999) The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr Opin Neurobiol 9:94–104PubMedCrossRefGoogle Scholar
  48. O’Malley DM, Masland RH (1989) Co-release of acetylcholine and gamma-aminobutyric acid by a retinal neuron. Proc Natl Acad Sci U S A 86:3414–3418PubMedCrossRefGoogle Scholar
  49. Owens DF, Boyce LH, Davis MBE, Kriegstein AR (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423PubMedGoogle Scholar
  50. Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nature Rev Neurosci 3:715–727CrossRefGoogle Scholar
  51. Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206PubMedCrossRefGoogle Scholar
  52. Ramon y Cajal SR (1911) Histologie du Système Nerveux de l’Homme et des Vertébrés,vol. II. Maloine, ParisGoogle Scholar
  53. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, et al (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255PubMedCrossRefGoogle Scholar
  54. Roberts E (1986) Failure of GABAergic inhibition: a key to local and global seizures. Adv Neurol 44:319–341PubMedGoogle Scholar
  55. Romo-Parra H, Vivar C, Maqueda J, Morales MA, Gutierrez R (2003) Activity-dependent induction of multitransmitter signaling onto pyramidal cells and interneurons of hippocampal area CA3. J Neurophysiol 89:3155–3167PubMedCrossRefGoogle Scholar
  56. Salin PA, Scanziani M, Malenka RC, Nicoll RA (1996) Distinct short-term plasticity at two excitatory synapses in the hippocampus Proc Natl Acad Sci U S A 93:13304–13309PubMedCrossRefGoogle Scholar
  57. Safiulina VF, Fattorini G, Conti F, Cherubini E (2006) GABAergic signaling at mossy fiber synapses in neonatal rat hippocampus. J Neurosci 26:597–608PubMedCrossRefGoogle Scholar
  58. Schmitz D, Mellor J, Nicoll RA (2001) Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science. 2001 Mar 9; 291(5510):1972–1976PubMedCrossRefGoogle Scholar
  59. Schwarzer C, Sperk G (1995) Hippocampal granule cells express glutamic acid decarboxylase-67 after limbic seizures in the rat. Neuroscience 69:705–709PubMedCrossRefGoogle Scholar
  60. Semyanov A, Kullmann DM (2000) Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors. Neuron 25:663–672PubMedCrossRefGoogle Scholar
  61. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522PubMedGoogle Scholar
  62. Sloviter RS, Dichter MA, Rachinsky TL, Dean E, Goodman JH, Sollas AL, Martin DL (1996) Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus. J Comp Neurol 373:593–618PubMedCrossRefGoogle Scholar
  63. Stirling RV, Bliss TV (1978) Hippocampal mossy fiber development at the ultrastructural level. Prog Brain Res 48:191–198PubMedCrossRefGoogle Scholar
  64. Toth K, Suares G, Lawrence JJ, Philips-Tansey E, McBain CJ (2000) Differential mechanisms of transmission at three types of mossy fiber synapse. J Neurosci 20:8279–8289PubMedGoogle Scholar
  65. Traub RD, Wong RK (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747PubMedCrossRefGoogle Scholar
  66. Traub RD, Miles R (1991) Multiple modes of neuronal population activity emerge after modifying specific synapses in a model of the CA3 region of the hippocampus. Ann N Y Acad Sci 627:277–290PubMedCrossRefGoogle Scholar
  67. Tyzio R, Represa A, Jorquera I, Ben-Ari Y, Gozlan H and Aniksztejn L (1999) The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J Neurosci 19:10372–10382PubMedGoogle Scholar
  68. Uchigashima M, Fukaya M, Watanabe M, Kamiya H (2007) Evidence against GABA release from glutamatergic mossy fiber terminals in the developing hippocampus. J Neurosci 27:8088–8100PubMedCrossRefGoogle Scholar
  69. Walker MC, Ruiz A, Kullmann DM (2001) Monosynaptic GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Neuron 29:703–715PubMedCrossRefGoogle Scholar
  70. Wang J, Reichling DB, Kyrozis A, MacDermott AB (1994) Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur J Neurosci 6:1275–1280PubMedCrossRefGoogle Scholar
  71. Weisskopf MG, Zalutsky RA, Nicoll RA (1993) The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 362:423–427PubMedCrossRefGoogle Scholar
  72. Westbrook GL, Mayer ML (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–643PubMedCrossRefGoogle Scholar
  73. Yuste R, Katz LC (1991) Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6:333–344PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Victoria F. Safiulina
  • Majid H. Mohajerani
  • Sudhir Sivakumaran
  • Enrico Cherubini
    • 1
    Email author
  1. 1.Neurobiology SectorInternational School for Advanced Studies34014 TriesteItaly

Personalised recommendations