Skip to main content

GABA, Glycine, and Glutamate Co-Release at Developing Inhibitory Synapses

  • Chapter
  • First Online:
Co-Existence and Co-Release of Classical Neurotransmitters

Abstract

Neurobiologists have long classified synaptic phenotype by a single neurotransmitter released at that synapse. Research over the past two decades has made it clear, however, that the classification of neurons and synapses as purely GABAergic, or even as purely inhibitory or excitatory, is no longer valid. In this chapter we review evidence showing that inhibitory synapses co-release multiple inhibitory neurotransmitters, and that some classical inhibitory synapses also release excitatory neurotransmitters. As multiple transmitter release is particularly prevalent at immature synapses, we pay special attention to developmental plasticity in considering possible mechanisms and functions for release of these seemingly antagonistic neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

acetylcholine

AMPAR:

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

ATP:

adenosine triphosphate

CN:

cochlear nucleus

GABA:

gamma-aminobutyric acid

GABAAR:

GABA (A) receptor

GABABR:

GABA (B) receptor

GAD:

glutamic acid decarboxylase

GlyR:

glycine receptor

GLYT2:

glycine transporter 2

IPSC:

inhibitory postsynaptic current

LSO:

lateral superior olive

mIPSC:

miniature inhibitory postsynaptic current

MNTB:

medial nucleus of the trapezoid body

mPSC:

miniature postsynaptic current

MSO:

medial superior olive

NMDAR:

N-methyl D-aspartic acid receptor

Pn :

postnatal day n

SPN:

superior paraolivary nucleus

VGAT:

vesicular GABA transporter

VGLUT2:

vesicular glutamate transporter 2

VGLUT3:

vesicular glutamate transporter 3

VIAAT:

vesicular inhibitory amino acid transporter

References

  • Aubrey KR, Rossi FM, Ruivo R, Alboni S, Bellenchi GC, Le Goff A, Gasnier B, Supplisson S (2007) The transporters GlyT2 and VIAAT cooperate to determine the vesicular glycinergic phenotype. J Neurosci 27:6273–6281

    PubMed  CAS  Google Scholar 

  • Awatramani GB, Turecek R, Trussell LO (2005) Staggered development of GABAergic and glycinergic transmission in the MNTB. J Neurophysiol 93:819–828

    PubMed  CAS  Google Scholar 

  • Banks MI, Smith PH (1992) Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J Neurosci 12:2819–2837

    PubMed  CAS  Google Scholar 

  • Behrend O, Brand A, Kapfer C, Grothe B (2002) Auditory response properties in the superior paraolivary nucleus of the gerbil. J Neurophysiol 87:2915–2928

    PubMed  Google Scholar 

  • Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997) GABAA, NMDA and AMPA receptors: a developmentally regulated ‘me´nage a` trois’. Trends Neurosci 20:523–529

    Google Scholar 

  • Bergersen L, Ruiz A, Bjaalie JG, Kullmann DM, Gundersen V (2003) GABA and GABAA receptors at hippocampal mossy fibre synapses. Eur J Neurosci 18:931–941

    PubMed  Google Scholar 

  • Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21:4593–4599

    PubMed  CAS  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    PubMed  CAS  Google Scholar 

  • Blaesse P, Ehrhardt S, Friauf E, Nothwang HG (2005) Developmental pattern of three vesicular glutamate transporters in the rat superior olivary complex. Cell Tissue Res 320:33–50

    PubMed  CAS  Google Scholar 

  • Borodinsky LN, Spitzer NC (2007) Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Proc Natl Acad Sci USA. 104:335–340

    PubMed  CAS  Google Scholar 

  • Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol 31:442–454

    PubMed  CAS  Google Scholar 

  • Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT Jr, Edwards RH, Storm-Mathisen J, Chaudhry FA (2004) Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 480:264–280

    PubMed  CAS  Google Scholar 

  • Caillard O, Ben-Ari Y, Gaiarsa JL (1999) Mechanisms of induction and expression of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J Neurosci 19:7568–7577

    PubMed  CAS  Google Scholar 

  • Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247:457–476

    PubMed  CAS  Google Scholar 

  • Carmignoto G, Vicini S (1992) Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258:1007–1011

    PubMed  CAS  Google Scholar 

  • Caspary DM, Finlayson PG (1991) Superior olivary complex: functional neuropharmacology of the principal cell types. In Neurobiology of hearing: the central auditory system (ed. RA Altschuler et al), 141–161

    Google Scholar 

  • Chang EH, Kotak VC, Sanes DH (2003) Long-term depression of synaptic inhibition is expressed postsynaptically in the developing auditory system. J Neurophysiol 90:1479–1488

    Google Scholar 

  • Charpier S, Behrends JC, Triller A, Faber DS, Korn H l (1995) “Latent” inhibitory connections become functional during activity-dependent plasticity. Proc Natl Acad Sci 92:117–120

    PubMed  CAS  Google Scholar 

  • Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, Storm-Mathisen J (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18:9733–9750

    PubMed  CAS  Google Scholar 

  • Chery N, De Koninck Y (2000) GABA(B) receptors are the first target of released GABA at lamina I inhibitory synapses in the adult rat spinal cord. J Neurophysiol 84:1006–1011

    PubMed  CAS  Google Scholar 

  • Contini M, Raviola E (2003) GABAergic synapses made by a retinal dopaminergic neuron. Proc Natl Acad Sci USA. 100:1358–1363

    PubMed  CAS  Google Scholar 

  • Crair MC, Malenka RC (1995) A critical period for long-term potentiation at thalamocortical synapses. Nature 375:325–328

    PubMed  CAS  Google Scholar 

  • Daniels RW, Collins CA, Chen K, Gelfand MV, Featherstone DE, DiAntonio A (2006) A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle. Neuron 49:11–16

    PubMed  CAS  Google Scholar 

  • Dehmel S, Kopp-Scheinpflug C, Dorrscheidt GJ, Rubsamen R (2002) Electrophysiological characterization of the superior paraolivary nucleus in the Mongolian gerbil. Hear Res 172:18–36

    PubMed  Google Scholar 

  • Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of co-released inhibitory transmitters at central synapses. J Neurosci 25:6490–6498

    PubMed  CAS  Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin

    Google Scholar 

  • Echteler, SM, Arjmand, E, Dallos, P (1989) Developmental alterations in the frequency map of the mammalian cochlea. Nature 341:147–149

    PubMed  CAS  Google Scholar 

  • Ehrlich I, Lohrke S, Friauf E (1999) Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl- regulation. J Physiol 520:121–137

    PubMed  CAS  Google Scholar 

  • Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272:1182–1187

    PubMed  CAS  Google Scholar 

  • Feng G, Tintrup H, Kirsch J, Nichol MC, Kuhse J, Betz H, Sanes JR (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282:1321–1324

    PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA. 99:14488–14493

    PubMed  CAS  Google Scholar 

  • Friauf E, Aragon C, Lohrke S, Westenfelder B, Zafra F (1999) Developmental expression of the glycine transporter GLYT2 in the auditory system of rats suggests involvement in synapse maturation. J Comp Neurol 412:17–37

    PubMed  CAS  Google Scholar 

  • Gabellec MM, Panzanelli P, Sassoe-Pognetto M, Lledo PM (2007) Synapse-specific localization of vesicular glutamate transporters in the rat olfactory bulb. Eur J Neurosci 25:1373–1383

    PubMed  Google Scholar 

  • Gaiarsa JL, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Tr Neurosci 25: 564–570

    CAS  Google Scholar 

  • Gillespie DC, Cihil K, Kandler K (2004) Developmental expression patterns of the vesicular glutamate transporters VGLUT1–3 in the auditory brainstem. Soc Nsci Abstr 947.12

    Google Scholar 

  • Gillespie DC, Kim G, Kandler K (2005) Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci 8:332–338

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Masterton RB, Baker BN, Wenthold RJ (1991) Acoustic chiasm. III: Nature, distribution, and sources of afferents to the lateral superior olive in the cat. J Comp Neurol 310:377–400

    PubMed  CAS  Google Scholar 

  • Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451

    PubMed  CAS  Google Scholar 

  • Gras C, Vinatier J, Amilhon B, Guerci A, Christov C, Ravassard P, Giros B, El Mestikawy S (2005) Developmentally regulated expression of VGLUT3 during early post-natal life. Neuropharmacology 49:901–911

    PubMed  CAS  Google Scholar 

  • Gutierrez R (2000) Seizures induce simultaneous GABAergic and glutamatergic transmission in the dentate gyrus-CA3 system. J Neurophysiol 84:3088–3090

    PubMed  CAS  Google Scholar 

  • Haas JS, Nowotny T, Abarbanel HD (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96:3305–3313

    PubMed  Google Scholar 

  • Haverkamp S, Wassle H (2004) Characterization of an amacrine cell type of the mammalian retina immunoreactive for vesicular glutamate transporter 3. J Comp Neurol 468:251–263

    PubMed  CAS  Google Scholar 

  • Helfert RH, Juiz JM, Bledsoe SC Jr, Bonneau JM, Wenthold RJ, Altschuler RA (1992) Patterns of glutamate, glycine, and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig. J Comp Neurol 323:305–325

    PubMed  CAS  Google Scholar 

  • Henkel CK, Brunso-Bechtold JK (1998) Calcium-binding proteins and GABA reveal spatial segregation of cell types within the developing lateral superior olivary nucleus of the ferret. Microsc Res Tech 41:234–245

    PubMed  CAS  Google Scholar 

  • Herzog E, Gilchrist J, Gras C, Muzerelle A, Ravassard P, Giros B, Gaspar P, El Mestikawy S (2004) Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience 123:983–1002

    PubMed  CAS  Google Scholar 

  • Herzog E, Takamori S, Jahn R, Brose N, Wojcik SM (2006) Synaptic and vesicular co-localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus. J Neurochem 99:1011–1018

    PubMed  CAS  Google Scholar 

  • Hestrin S (1992) Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 357:686–689

    PubMed  CAS  Google Scholar 

  • Hooks BM, Chen C (2006) Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse. Neuron 52:281–291

    PubMed  CAS  Google Scholar 

  • Huberman AD, Speer CM, Chapman B (2006) Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1. Neuron 52:247–254

    PubMed  CAS  Google Scholar 

  • Hugel S, Schlichter R (2003) Convergent control of synaptic GABA release from rat dorsal horn neurones by adenosine and GABA autoreceptors. J Physiol 551:479–489

    PubMed  CAS  Google Scholar 

  • Isaac JT, Crair MC, Nicoll RA, Malenka RC (1997) Silent synapses during development of thalamocortical inputs. Neuron 18:269–280

    PubMed  CAS  Google Scholar 

  • Isaacson JS (1998) GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse. J Neurophysiol 80:1571–1576

    PubMed  CAS  Google Scholar 

  • Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosc. 2:241–245

    CAS  Google Scholar 

  • Johnson J, Sherry DM, Liu X, Fremeau RT Jr, Seal RP, Edwards RH, Copenhagen DR (2004) Vesicular glutamate transporter 3 expression identifies glutamatergic amacrine cells in the rodent retina. J Comp Neurol 477:386–398

    PubMed  CAS  Google Scholar 

  • Jonas P, Bischofberger J, Sandkuhler J. (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281:419–424

    PubMed  CAS  Google Scholar 

  • Juiz JM, Helfert RH, Bonneau JM, Wenthold RJ, Altschuler RA l (1996) Three classes of inhibitory amino acid terminals in the cochlear nucleus of the guinea pig. J Comp Neurol 373:11–26

    PubMed  CAS  Google Scholar 

  • Kakizawa S, Yamasaki M, Watanabe M, Kano M (2000) Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci 20:4954–4961

    PubMed  CAS  Google Scholar 

  • Kandler K, Friauf E (1995) Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J Neurosci 15:6890–6894

    PubMed  CAS  Google Scholar 

  • Kano M, Rexhausen U, Dresse, J, Konnerth A (1992) Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356:601–604

    PubMed  CAS  Google Scholar 

  • Keller AF, Coull JA, Chery N, Poisbeau P, De Koninck Y (2001) Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J Neurosci 21:7871–7880

    PubMed  CAS  Google Scholar 

  • Kim GS, Kandler K (2003) Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nat Neurosci 6:282–290

    PubMed  CAS  Google Scholar 

  • Kirsch J, Betz H (1998) Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392:717–720

    PubMed  CAS  Google Scholar 

  • Kneussel M, Brandstatter JH, Gasnier B, Feng G, Sanes JR, Betz H (2001) Gephyrin-independent clustering of postsynaptic GABA(A) receptor subtypes. Mol Cell Neurosci 17:973–982

    PubMed  CAS  Google Scholar 

  • Kneussel M, Brandstatter JH, Laube B, Stahl S, Muller U, Betz H (1999) Loss of postsynaptic GABA(A) receptor clustering in gephyrin-deficient mice. J Neurosci 19:9289–9297

    PubMed  CAS  Google Scholar 

  • Kolston J, Osen KK, Hackney CM, Ottersen OP, Storm-Mathisen J (1992) An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat Embryol (Berl) 186:443–465

    CAS  Google Scholar 

  • Komatsu Y (1994) Age-dependent long-term potentiation of inhibitory synaptic transmission in rat visual cortex. J Neurosci 14:6488–6499

    PubMed  CAS  Google Scholar 

  • Korada S, Schwartz IR (1999) Development of GABA, glycine, and their receptors in the auditory brainstem of gerbil: a light and electron microscopic study. J Comp Neurol 409:664–681

    PubMed  CAS  Google Scholar 

  • Kotak VC, DiMattina C, Sanes DH (2001) GABA(B) and Trk receptor signaling mediates long-lasting inhibitory synaptic depression. J Neurophysiol 86:536–540

    Google Scholar 

  • Kotak VC, Korada S, Schwartz IR, Sanes DH (1998) A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J Neurosci 18:4646–4655

    PubMed  CAS  Google Scholar 

  • Kros CJ, Ruppersberg JP, Rusch A (1998) Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394:281–284

    PubMed  CAS  Google Scholar 

  • Kulesza RJ Jr, Spirou GA, Berrebi AS (2003) Physiological response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 89:2299–2312.

    PubMed  Google Scholar 

  • Kullmann DM, Asztely F, Walker MC (2000) The role of mammalian ionotropic receptors in synaptic plasticity: LTP, LTD and epilepsy. Cell Mol Life Sci 57:1551–1561

    PubMed  CAS  Google Scholar 

  • Kullmann PH, Kandler K (2001) Glycinergic/GABAergic synapses in the lateral superior olive are excitatory in neonatal C57B1/6 J mice. Brain Res Dev Brain Res 131:143–147

    PubMed  CAS  Google Scholar 

  • Kullmann PH, Ene FA, Kandler K (2002) Glycinergic and GABAergic calcium responses in the developing lateral superior olive. Eur J Neurosci 15:1093–1104

    PubMed  Google Scholar 

  • Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R (1997) Ca2+ oscillations mediated by the synergistic excitatory actions of GABAA and NMDA receptors in the neonatal hippocampus. Neuron 18:243–255

    PubMed  CAS  Google Scholar 

  • Levi S, Logan SM, Tovar KR, Craig AM (2004) Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons. J Neurosci 24:207–217

    PubMed  CAS  Google Scholar 

  • Liao D, Zhang X, O’Brien R, Ehlers MD, Huganir RL (1999) Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci 2:37–43

    PubMed  CAS  Google Scholar 

  • Lien CC, Mu Y, Vargas-Caballero M, Poo MM (2006) Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors. Nat Neurosci 9:372–380

    PubMed  CAS  Google Scholar 

  • Lim R, Alvarez FJ, Walmsley B (2000) GABA mediates presynaptic inhibition at glycinergic synapses in a rat auditory brainstem nucleus. J Physiol 525:447–459

    PubMed  CAS  Google Scholar 

  • Lippe WR (1994) Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 14:1486–1495

    PubMed  CAS  Google Scholar 

  • Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Cloning and expression of a spinal cord- and brain-specific glycine transporter with novel structural features. J Biol Chem 268:22802–22808

    PubMed  CAS  Google Scholar 

  • McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389:870–876

    PubMed  CAS  Google Scholar 

  • McLean HA, Caillard O, Ben-Ari Y, Gaiarsa JL (1996) Bidirectional plasticity expressed by GABAergic synapses in the neonatal rat hippocampus. J Physiol 496:471–477

    PubMed  CAS  Google Scholar 

  • Meister M, Wong RO, Baylor DA, Shatz CJ (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252:939–943

    PubMed  CAS  Google Scholar 

  • Moore MJ, Caspary DM (1983) Strychnine blocks binaural inhibition in lateral superior olivary neurons. J Neurosci 3:237–242

    PubMed  CAS  Google Scholar 

  • Moss, SJ, Smart, TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2:240–250

    PubMed  CAS  Google Scholar 

  • Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, Ishibashi H (2004) Developmental switch from GABA to glycine release in single central synaptic terminals. Nat Neurosci 7:17–23

    PubMed  CAS  Google Scholar 

  • Nugent FS, Penick EC, Kauer JA (2007) Opioids block long-term potentiation of inhibitory synapses. Nature 446:1086–10890

    PubMed  CAS  Google Scholar 

  • O'Brien JA, Berger AJ (1999) Cotransmission of GABA and glycine to brain stem motoneurons. J Neurophysiol 82:1638–1641

    PubMed  Google Scholar 

  • Oda Y, Charpier S, Murayama Y, et al (1995) Long-term potentiation of glycinergic inhibitory synaptic transmission. J Neurophysiol 74:1056–1074

    PubMed  CAS  Google Scholar 

  • Oertel J, Villmann C, Kettenmann H, Kirchhoff F, Becker CM (2007) A novel glycine receptor beta subunit splice variant predicts an unorthodox transmembrane topology Assembly into heteromeric receptor complexes. J Biol Chem 282:2798–2807

    PubMed  CAS  Google Scholar 

  • O'Malley DM, Masland RH (1989) Co-release of acetylcholine and gamma-aminobutyric acid by a retinal neuron. Proc Natl Acad Sci USA. 86:3414–3418

    PubMed  Google Scholar 

  • O'Malley DM, Sandell JH, Masland RH (1992) Co-release of acetylcholine and GABA by the starburst amacrine cells. J Neurosci 12:1394–408

    PubMed  Google Scholar 

  • Otis TS, De Koninck Y, Mody I (1994) Lasting potentiation of inhibition is associated with an increased number of gamma-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc Natl Acad Sci USA. 91:7698–7702

    PubMed  CAS  Google Scholar 

  • Ottem EN, Godwin JG, Krishnan S, Petersen SL (2004) Dual-phenotype GABA/glutamate neurons in adult preoptic area: sexual dimorphism and function. J Neurosci 24:8097–8105

    PubMed  CAS  Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392

    PubMed  CAS  Google Scholar 

  • Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450:342–353

    PubMed  CAS  Google Scholar 

  • Ouardouz M, Sastry BR (2000) Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. J Neurophysiol 84:1414–1421

    PubMed  CAS  Google Scholar 

  • Overstreet-Wadiche L, Bromberg DA, Bensen AL, Westbrook GL (2005) GABAergic signaling to newborn neurons in dentate gyrus. J Neurophysiol 94:4528–4532

    PubMed  Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    PubMed  CAS  Google Scholar 

  • Paarmann I, Schmitt B, Meyer B, Karas M, Betz H (2006) Mass spectrometric analysis of glycine receptor-associated gephyrin splice variants. J Biol Chem 281:34918–34925

    PubMed  CAS  Google Scholar 

  • Piechotta K, Weth F, Harvey RJ, Friauf E (2001) Localization of rat glycine receptor alpha1 and alpha2 subunit transcripts in the developing auditory brainstem. J Comp Neurol 438:336–352

    PubMed  CAS  Google Scholar 

  • Rabacchi S, Bailly Y, Delhaye-Bourchaud N, Mariani J (1992) Involvement of the N-methyl D-aspartate (NMDA) receptor in synapse elimination during cerebellar development. Science 256:1823–1825

    PubMed  CAS  Google Scholar 

  • Represa A, Ben-Ari Y (2005) Trophic actions of GABA on neuronal development. Trends Neurosci 28:278–283

    PubMed  CAS  Google Scholar 

  • Rusakov DA, Kullmann DM (1998) Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci 18:3158–3170

    PubMed  CAS  Google Scholar 

  • Russier M, Kopysova IL, Ankri N, Ferrand N, Debanne D (2002) GABA and glycine co-release optimizes functional inhibition in rat brainstem motoneurons in vitro. J Physiol 541:123–137

    PubMed  CAS  Google Scholar 

  • Sagne C, El Mestikawy S, Isambert MF, Hamon M, Henry JP, Giros B, Gasnier B (1997) Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases. FEBS Lett 417:177–183

    PubMed  CAS  Google Scholar 

  • Sandler R, Smith AD (1991) Coexistence of GABA and glutamate in mossy fiber terminals of the primate hippocampus: an ultrastructural study. J Comp Neurol 303:177–192

    PubMed  CAS  Google Scholar 

  • Sanes DH, Rubel EW (1988) The ontogeny of inhibition and excitation in the gerbil lateral superior olive. J Neurosci 8:682–700

    PubMed  CAS  Google Scholar 

  • Sanes DH, Siverls V (1991) Development and specificity of inhibitory terminal arborizations in the central nervous system. J Neurobiol 22:837–854

    PubMed  CAS  Google Scholar 

  • Schafer MK, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277:50734–50748

    PubMed  Google Scholar 

  • Seal RP, Edwards RH. (2006) The diverse roles of vesicular glutamate transporter 3. Handb Exp Pharmacol (175):137–150

    Google Scholar 

  • Seddik R, Schlichter R, Trouslard J (2007) Corelease of GABA/glycine in lamina-X of the spinal cord of neonatal rats. Neuroreport 18:1025–1029

    PubMed  CAS  Google Scholar 

  • Smith AJ, Owens S, Forsythe ID (2000) Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J Physiol 529:681–698

    PubMed  CAS  Google Scholar 

  • Smith PH, Joris PX, Carney LH, Yin TCT (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304:387–407

    PubMed  CAS  Google Scholar 

  • Somogyi J (2006) Functional significance of co-localization of GABA and Glu in nerve terminals: a hypothesis. Curr Top Med Chem 6:969–973

    PubMed  CAS  Google Scholar 

  • Somogyi J, Baude A, Omori Y, Shimizu H, El Mestikawy S, Fukaya M, Shigemoto R, Watanabe M, Somogyi P (2004) GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat. Eur J Neurosci 19:552–569

    PubMed  Google Scholar 

  • Spike RC, Watt C, Zafra F, Todd AJ (1997) An ultrastructural study of the glycine transporter GLYT2 and its association with glycine in the superficial laminae of the rat spinal dorsal horn. Neuroscience 77:543–551

    PubMed  CAS  Google Scholar 

  • Stornetta RL, Rosin DL, Simmons JR, McQuiston TJ, Vujovic N, Weston MC, Guyenet PG (2005) Coexpression of vesicular glutamate transporter-3 and gamma-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J Comp Neurol 492:477–494

    PubMed  CAS  Google Scholar 

  • Takamori S, Malherbe P, Broger C, Jahn R (2002) Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Rep 3:798–803

    PubMed  CAS  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    PubMed  CAS  Google Scholar 

  • Tkatch T, Baranauskas G, Surmeier DJ (1998) Basal forebrain neurons adjacent to the globus pallidus coexpress GABAergic and cholinergic marker mRNAs. Neuroreport 9:1935–1939

    PubMed  CAS  Google Scholar 

  • Todd AJ (1991) Immunohistochemical evidence that acetylcholine and glycine exist in different populations of GABAergic neurons in lamina III of rat spinal dorsal horn. Neuroscience 44:741–746

    PubMed  CAS  Google Scholar 

  • Todd AJ, Sullivan AC (1990) Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 296:496–505

    PubMed  CAS  Google Scholar 

  • Triller A, Cluzeaud F, Korn H (1987) gamma-Aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. J Cell Biol 104:947–956

    PubMed  CAS  Google Scholar 

  • Tsen G, Williams B, Allaire P, Zhoru YD, Ikonomov O, Kondova I, Jacob MH (2000) Receptors with opposing functions are in postsynaptic microdomains under one presynaptic terminal. Nat Neurosci 3:126–132

    Google Scholar 

  • Turecek R, Trussell LO (2001) Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411:587–590

    PubMed  CAS  Google Scholar 

  • Turecek R, Trussell LO (2002) Reciprocal developmental regulation of presynaptic ionotropic receptors. Proc Natl Acad Sci USA. 99:13884–13889

    PubMed  CAS  Google Scholar 

  • Vaney DI, Young HM (1988) GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Res. 438:369–373

    PubMed  CAS  Google Scholar 

  • Walker MC, Ruiz A, Kullmann DM (2001) Monosynaptic GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Neuron 29:703–715

    PubMed  CAS  Google Scholar 

  • Wang CT, Blankenship AG, Anishchenko A, Elstrott J, Fikhman M, Nakanishi S, Feller MB (2007) GABA(A) receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. J Neurosci 27:9130–9140

    PubMed  CAS  Google Scholar 

  • Wang, JH, Stelzer, A (1996) Shared calcium signalling pathways in the induction of long-term potentiation and synaptic disinhibition in CA1 pyramidal cell dendrites. J Neurophysiol 75:1687–1702

    PubMed  CAS  Google Scholar 

  • Wentzel PR, De Zeeuw CI, Holstege JC, Gerrits NM (1993) Colocalization of GABA and glycine in the rabbit oculomotor nucleus. Neurosci Lett 164:25–29

    PubMed  CAS  Google Scholar 

  • Wojcik SM, Katsurabayashi S, Guillemin I, Friauf E, Rosenmund C, Brose N, Rhee JS (2006) A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 50:575–587

    PubMed  CAS  Google Scholar 

  • Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron 39:807–820

    PubMed  CAS  Google Scholar 

  • Wu SH, Kelly JB (1992) Synaptic pharmacology of the superior olivary complex studied in mouse brain slice. J Neurosci 12:3084–3097

    PubMed  CAS  Google Scholar 

  • Wulle I, Wagner HJ. (1990) GABA and tyrosine hydroxylase immunocytochemistry reveal different patterns of colocalization in retinal neurons of various vertebrates. J Comp Neurol 296:173–178

    PubMed  CAS  Google Scholar 

  • Xu J, Mashimo T, Sudhof TC (2007) Synaptotagmin-1, -2, and -9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54:567–581

    PubMed  CAS  Google Scholar 

  • Zafra F, Gomeza J, Olivares L, Aragon C, Gimenez C (1995) Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. Eur J Neurosci 7:1342–1352

    PubMed  CAS  Google Scholar 

  • Zheng JJ, Lee S, Zhou ZJ (2004) A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron 44:851–864

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deda C. Gillespie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gillespie, D.C., Kandler, K. (2009). GABA, Glycine, and Glutamate Co-Release at Developing Inhibitory Synapses. In: Gutierrez, R. (eds) Co-Existence and Co-Release of Classical Neurotransmitters. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09622-3_5

Download citation

Publish with us

Policies and ethics