Skip to main content

Mechanisms of Synapse Formation: Activity-Dependent Selection of Neurotransmitters and Receptors

  • Chapter
  • First Online:
Co-Existence and Co-Release of Classical Neurotransmitters

Abstract

Specification of the neurotransmitters and receptors involved in a synapse is a key feature of development of the nervous system. Multiple mechanisms govern these aspects of neuronal differentiation. Among them electrical activity appears to be an important factor, engaging the functionality of the nervous system right from the beginning of its formation. In the developing Xenopus neuromuscular junction, the specification of neurotransmitters and receptors responds to a selection process that depends on calcium-mediated neuronal activity. This mechanism may provide a level of plasticity that is responsive to changes in environmental cues at very early stages of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agoston DV, Eiden LE, Brenneman DE (1991a) Calcium-dependent regulation of the enkephalin phenotype by neuronal activity during early ontogeny. J Neurosci Res 28:140–148

    Google Scholar 

  • Agoston DV, Eiden LE, Brenneman DE, Gozes I (1991b) Spontaneous electrical activity regulates vasoactive intestinal peptide expression in dissociated spinal cord cell cultures. Brain Res Mol Brain Res 10:235–240

    Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jr., Jones EG (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52:258–266

    PubMed  CAS  Google Scholar 

  • Ango F, Pin JP, Tu JC, Xiao B, Worley PF, Bockaert J, Fagni L (2000) Dendritic and axonal targeting of type 5 metabotropic glutamate receptor is regulated by homer1 proteins and neuronal excitation. J Neurosci 20:8710–8716

    PubMed  CAS  Google Scholar 

  • Bahn S, Wisden W, Dunnett SB, Svendsen C (1999) The intrinsic specification of gamma-aminobutyric acid type A receptor alpha6 subunit gene expression in cerebellar granule cells. Eur J Neurosci 11:2194–2198

    Article  PubMed  CAS  Google Scholar 

  • Baker H (1990) Unilateral, neonatal olfactory deprivation alters tyrosine hydroxylase expression but not aromatic amino acid decarboxylase or GABA immunoreactivity. Neuroscience 36:761–771

    Article  PubMed  CAS  Google Scholar 

  • Baldwin TJ, Yoshihara CM, Blackmer K, Kintner CR, Burden SJ (1988) Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis. J Cell Biol 106:469–478

    Article  PubMed  CAS  Google Scholar 

  • Belousov AB, Hunt ND, Raju RP, Denisova JV (2002) Calcium-dependent regulation of cholinergic cell phenotype in the hypothalamus in vitro. J Neurophysiol 88:1352–1362

    PubMed  CAS  Google Scholar 

  • Bessereau JL, Stratford-Perricaudet LD, Piette J, Le Poupon C, Changeux JP (1994) In vivo and in vitro analysis of electrical activity-dependent expression of muscle acetylcholine receptor genes using adenovirus. Proc Natl Acad Sci U S A 91:1304–1308

    Article  PubMed  CAS  Google Scholar 

  • Borodinsky LN, Spitzer NC (2007) Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Proc Natl Acad Sci U S A 104:335–340

    Article  PubMed  CAS  Google Scholar 

  • Borodinsky LN, Root CM, Cronin JA, Sann SB, Gu X, Spitzer NC (2004) Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429:523–530

    Article  PubMed  CAS  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    Article  PubMed  CAS  Google Scholar 

  • Brosenitsch TA, Katz DM (2001) Physiological patterns of electrical stimulation can induce neuronal gene expression by activating N-type calcium channels. J Neurosci 21:2571–2579

    PubMed  CAS  Google Scholar 

  • Brosenitsch TA, Katz DM (2002) Expression of Phox2 transcription factors and induction of the dopaminergic phenotype in primary sensory neurons. Mol Cell Neurosci 20:447–457

    Article  PubMed  CAS  Google Scholar 

  • Brumwell CL, Johnson JL, Jacob MH (2002) Extrasynaptic alpha 7-nicotinic acetylcholine receptor expression in developing neurons is regulated by inputs, targets, and activity. J Neurosci 22:8101–8109

    PubMed  CAS  Google Scholar 

  • Cantallops I, Cline HT (2000) Synapse formation: if it looks like a duck and quacks like a duck. Curr Biol 10:R620–623

    Article  PubMed  CAS  Google Scholar 

  • Carder RK, Hendry SH (1994) Neuronal characterization, compartmental distribution, and activity-dependent regulation of glutamate immunoreactivity in adult monkey striate cortex. J Neurosci 14:242–262

    PubMed  CAS  Google Scholar 

  • Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, Goulding M, Ma Q (2005) Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat Neurosci 8:1510–1515

    Article  PubMed  CAS  Google Scholar 

  • Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307:1324–1328

    Article  PubMed  CAS  Google Scholar 

  • Chih B, Gollan L, Scheiffele P (2006) Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51:171–178

    Article  PubMed  CAS  Google Scholar 

  • Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR, Sudhof TC (2007) Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54:919–931

    Article  PubMed  CAS  Google Scholar 

  • Chung HJ, Huang YH, Lau LF, Huganir RL (2004) Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24:10248–10259

    Article  PubMed  CAS  Google Scholar 

  • Ciccolini F, Collins TJ, Sudhoelter J, Lipp P, Berridge MJ, Bootman MD (2003) Local and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic phenotype during neural precursor differentiation. J Neurosci 23:103–111

    PubMed  CAS  Google Scholar 

  • Daadi MM, Weiss S (1999) Generation of tyrosine hydroxylase-producing neurons from precursors of the embryonic and adult forebrain. J Neurosci 19:4484–4497

    PubMed  CAS  Google Scholar 

  • Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30

    Article  PubMed  CAS  Google Scholar 

  • Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM (1996) Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87:661–673

    Article  PubMed  CAS  Google Scholar 

  • Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van Heyningen V, Jessell TM, Briscoe J (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90:169–180

    Article  PubMed  CAS  Google Scholar 

  • Francis NJ, Landis SC (1999) Cellular and molecular determinants of sympathetic neuron development. Annu Rev Neurosci 22:541–566

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi M, Tabuchi A, Tsuda M (2004) Activity-dependent transcriptional activation and mRNA stabilization for cumulative expression of pituitary adenylate cyclase-activating polypeptide mRNA controlled by calcium and cAMP signals in neurons. J Biol Chem 279:47856–47865

    Article  PubMed  CAS  Google Scholar 

  • Ghose S, Wroblewska B, Corsi L, Grayson DR, De Blas AL, Vicini S, Neale JH (1997) N-acetylaspartylglutamate stimulates metabotropic glutamate receptor 3 to regulate expression of the GABA(A) alpha6 subunit in cerebellar granule cells. J Neurochem 69:2326–2335

    Article  PubMed  CAS  Google Scholar 

  • Goldman D, Staple J (1989) Spatial and temporal expression of acetylcholine receptor RNAs in innervated and denervated rat soleus muscle. Neuron 3:219–228

    Article  PubMed  CAS  Google Scholar 

  • Goldman D, Brenner HR, Heinemann S (1988) Acetylcholine receptor alpha-, beta-, gamma-, and delta-subunit mRNA levels are regulated by muscle activity. Neuron 1:329–333

    Article  PubMed  CAS  Google Scholar 

  • Goridis C, Brunet JF (1999) Transcriptional control of neurotransmitter phenotype. Curr Opin Neurobiol 9:47–53

    Article  PubMed  CAS  Google Scholar 

  • Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119:1013–1026

    Article  PubMed  CAS  Google Scholar 

  • Gu X, Spitzer NC (1995) Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375:784–787

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez R (2000) Seizures induce simultaneous GABAergic and glutamatergic transmission in the dentate gyrus-CA3 system. J Neurophysiol 84:3088–3090

    PubMed  CAS  Google Scholar 

  • Gutierrez R (2002) Activity-dependent expression of simultaneous glutamatergic and GABAergic neurotransmission from the mossy fibers in vitro. J Neurophysiol 87:2562–2570

    PubMed  CAS  Google Scholar 

  • Gutierrez R, Romo-Parra H, Maqueda J, Vivar C, Ramirez M, Morales MA, Lamas M (2003) Plasticity of the GABAergic phenotype of the “glutamatergic” granule cells of the rat dentate gyrus. J Neurosci 23:5594–5598

    PubMed  CAS  Google Scholar 

  • Habecker BA, Asmus SA, Francis N, Landis SC (1997) Target regulation of VIP expression in sympathetic neurons. Ann N Y Acad Sci 814:198–208

    Article  PubMed  CAS  Google Scholar 

  • Hahm SH, Chen Y, Vinson C, Eiden LE (2003) A calcium-initiated signaling pathway propagated through calcineurin and cAMP response element-binding protein activates proenkephalin gene transcription after depolarization. Mol Pharmacol 64:1503–1511

    Article  PubMed  CAS  Google Scholar 

  • Hendry SH, Jones EG (1986) Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature 320:750–753

    Article  PubMed  CAS  Google Scholar 

  • Hendry SH, Jones EG (1988) Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys. Neuron 1:701–712

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg T, Brosenitsch T, Katz DM (1995) Depolarizing stimuli induce high levels of dopamine synthesis in fetal rat sensory neurons. Neuroreport 7:233–237

    PubMed  CAS  Google Scholar 

  • Huntsman MM, Isackson PJ, Jones EG (1994) Lamina-specific expression and activity-dependent regulation of seven GABAA receptor subunit mRNAs in monkey visual cortex. J Neurosci 14:2236–2259

    PubMed  CAS  Google Scholar 

  • Levey MS, Brumwell CL, Dryer SE, Jacob MH (1995) Innervation and target tissue interactions differentially regulate acetylcholine receptor subunit mRNA levels in developing neurons in situ. Neuron 14:153–162

    Article  PubMed  CAS  Google Scholar 

  • Levinson JN, El-Husseini A (2005) Building excitatory and inhibitory synapses: balancing neuroligin partnerships. Neuron 48:171–174

    Article  PubMed  CAS  Google Scholar 

  • Levinson JN, Chery N, Huang K, Wong TP, Gerrow K, Kang R, Prange O, Wang YT, El-Husseini A (2005) Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD–95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem 280:17312–17319

    Article  PubMed  CAS  Google Scholar 

  • Lissin DV, Gomperts SN, Carroll RC, Christine CW, Kalman D, Kitamura M, Hardy S, Nicoll RA, Malenka RC, von Zastrow M (1998) Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc Natl Acad Sci U S A 95:7097–7102

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  PubMed  CAS  Google Scholar 

  • Marty S, Onteniente B (1997) The expression pattern of somatostatin and calretinin by postnatal hippocampal interneurons is regulated by activity-dependent and -independent determinants. Neuroscience 80:79–88

    Article  PubMed  CAS  Google Scholar 

  • Marty S, Wehrle R, Fritschy JM, Sotelo C (2004) Quantitative effects produced by modifications of neuronal activity on the size of GABAA receptor clusters in hippocampal slice cultures. Eur J Neurosci 20:427–440

    Article  PubMed  Google Scholar 

  • Mellor JR, Merlo D, Jones A, Wisden W, Randall AD (1998) Mouse cerebellar granule cell differentiation: electrical activity regulates the GABAA receptor alpha 6 subunit gene. J Neurosci 18:2822–2833

    PubMed  CAS  Google Scholar 

  • Merlie JP, Sanes JR (1985) Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature 317:66–68

    Article  PubMed  CAS  Google Scholar 

  • Munoz A, Huntsman MM, Jones EG (1998) GABA(B) receptor gene expression in monkey thalamus. J Comp Neurol 394:118–126

    Article  PubMed  CAS  Google Scholar 

  • Nam CI, Chen L (2005) Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci U S A 102:6137–6142

    Article  PubMed  CAS  Google Scholar 

  • Nguyen QT, Lichtman JW (1996) Mechanism of synapse disassembly at the developing neuromuscular junction. Curr Opin Neurobiol 6:104–112

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Kauer JA, Malenka RC (1988) The current excitement in long-term potentiation. Neuron 1:97–103

    Article  PubMed  CAS  Google Scholar 

  • Patz S, Wirth MJ, Gorba T, Klostermann O, Wahle P (2003) Neuronal activity and neurotrophic factors regulate GAD-65/67 mRNA and protein expression in organotypic cultures of rat visual cortex. Eur J Neurosci 18:1–12

    Article  PubMed  Google Scholar 

  • Prange O, Wong TP, Gerrow K, Wang YT, El-Husseini A (2004) A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci U S A 101:13915–13920

    Article  PubMed  CAS  Google Scholar 

  • Purves D, Lichtman JW (1980) Elimination of synapses in the developing nervous system. Science 210:153–157

    Article  PubMed  CAS  Google Scholar 

  • Ramirez M, Gutierrez R (2001) Activity-dependent expression of GAD67 in the granule cells of the rat hippocampus. Brain Res 917:139–146

    Article  PubMed  CAS  Google Scholar 

  • Rosselet C, Zennou-Azogui Y, Xerri C (2006) Nursing-induced somatosensory cortex plasticity: temporally decoupled changes in neuronal receptive field properties are accompanied by modifications in activity-dependent protein expression. J Neurosci 26: 10667–10676

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Townsend M, Constantine-Paton M (2000) Activity-dependent induction of tonic calcineurin activity mediates a rapid developmental downregulation of NMDA receptor currents. Neuron 28:103–114

    Article  PubMed  CAS  Google Scholar 

  • Slonimsky JD, Mattaliano MD, Moon JI, Griffith LC, Birren SJ (2006) Role for calcium/calmodulin-dependent protein kinase II in the p75-mediated regulation of sympathetic cholinergic transmission. Proc Natl Acad Sci U S A 103:2915–2919

    Article  PubMed  CAS  Google Scholar 

  • Song JY, Ichtchenko K, Sudhof TC, Brose N (1999) Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci U S A 96:1100–1105

    Article  PubMed  CAS  Google Scholar 

  • Spitzer NC, Borodinsky LN, Root CM (2005) Homeostatic activity-dependent paradigm for neurotransmitter specification. Cell Calcium 37:417–423

    Article  PubMed  CAS  Google Scholar 

  • Thompson CL, Pollard S, Stephenson FA (1996) Bidirectional regulation of GABAA receptor alpha1 and alpha6 subunit expression by a cyclic AMP-mediated signalling mechanism in cerebellar granule cells in primary culture. J Neurochem 67:434–437

    Article  PubMed  CAS  Google Scholar 

  • Thompson CL, Tehrani MH, Barnes EM, Jr., Stephenson FA (1998) Decreased expression of GABAA receptor alpha6 and beta3 subunits in stargazer mutant mice: a possible role for brain-derived neurotrophic factor in the regulation of cerebellar GABAA receptor expression? Brain Res Mol Brain Res 60:282–290

    Article  PubMed  CAS  Google Scholar 

  • Tu S, Debski EA (1999) Development and regulation of substance P expression in neurons of the tadpole optic tectum. Vis Neurosci 16:695–705

    Article  PubMed  CAS  Google Scholar 

  • Tu S, Butt CM, Pauly JR, Debski EA (2000) Activity-dependent regulation of substance P expression and topographic map maintenance by a cholinergic pathway. J Neurosci 20:5346–5357

    PubMed  CAS  Google Scholar 

  • Varoqueaux F, Jamain S, Brose N (2004) Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 83:449–456

    Article  PubMed  CAS  Google Scholar 

  • Walicke PA, Patterson PH (1981) On the role of Ca2+ in the transmitter choice made by cultured sympathetic neurons. J Neurosci 1:343–350

    PubMed  CAS  Google Scholar 

  • Walicke PA, Campenot RB, Patterson PH (1977) Determination of transmitter function by neuronal activity. Proc Natl Acad Sci U S A 74:5767–5771

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Ko GY, Kelly PT (1997) Cellular and molecular bases of memory: synaptic and neuronal plasticity. J Clin Neurophysiol 14:264–293

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Stock RE, Gronostajski RM, Wong YW, Schachner M, Kilpatrick DL (2004) A role for nuclear factor I in the intrinsic control of cerebellar granule neuron gene expression. J Biol Chem 279:53491–53497

    Article  PubMed  CAS  Google Scholar 

  • Watt SD, Gu X, Smith RD, Spitzer NC (2000) Specific frequencies of spontaneous Ca2+ transients upregulate GAD 67 transcripts in embryonic spinal neurons. Mol Cell Neurosci 16:376–387

    Article  PubMed  CAS  Google Scholar 

  • Zweifel LS, Kuruvilla R, Ginty DD (2005) Functions and mechanisms of retrograde neurotrophin signalling. Nat Rev Neurosci 6:615–625

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura N. Borodinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Borodinsky, L.N., Spitzer, N.C. (2009). Mechanisms of Synapse Formation: Activity-Dependent Selection of Neurotransmitters and Receptors. In: Gutierrez, R. (eds) Co-Existence and Co-Release of Classical Neurotransmitters. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09622-3_3

Download citation

Publish with us

Policies and ethics