Skip to main content

Synaptic Co-Release of ATP and GABA

Functional Characteristics, Modulation and Physiological Implications

  • Chapter
  • First Online:
Co-Existence and Co-Release of Classical Neurotransmitters

Abstract

Over the last 30 years, adenosine 5’-triphosphate (ATP) has been clearly established as a cotransmitter with noradrenaline and acetylcholine in the peripheral nervous system. More recently, ATP was also identified as a cotransmitter in the central nervous system. In neuronal cultures from postnatal rat spinal cord dorsal horn or embryonic chick and postnatal mouse lateral hypothalamus, ATP was surprisingly found to be synaptically coreleased with the inhibitory neurotransmitter GABA, but not with glutamate. In these preparations, ATP activates excitatory cation-permeable receptors (P2X receptors), whereas GABA stimulates anion-permeable inhibitory GABAA receptors. The corelease of ATP and GABA therefore results in a fast mixed excitatory/inhibitory ATP/GABA cotransmission. Here we review the current knowledge on ATP/GABA cotransmission, the possible interactions of synaptically released ATP and GABA at pre- and postsynaptic sites and discuss the issues related to the role of this mixed cotransmission in the context of physiological and pathological situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

ADP:

adenosine 5’-diphosphate

AMP:

adenosine 5’-monophosphate

ATP:

adenosine 5’-triphosphate

CNQX:

6-cyano-7-nitroquinoxaline-2,3-dione

D-APV:

D-amino-phosphonovaleric acid

ECl :

equilibrium potential for Cl- ions

Ecations :

equilibrium potential for cations

ePSC:

electrically-evoked postsynaptic current

eEPSC:

electrically-evoked excitatory postsynaptic current

eIPSC:

electrically-evoked inhibitory postsynaptic current

DHEA:

dehydroepiandrosterone

DPCPX:

8-Cyclopentyl-1,3-dipropylxanthine

GABA:

γ-aminobutyric acid

HP:

holding potential

mPSC:

miniature postsynaptic current

mEPSC:

miniature excitatory postsynaptic current

mIPSC:

miniature inhibitory postsynaptic current

NA:

noradrenaline

NMDA:

N-methyl-D-Aspartic acid

References

  • Baccei ML, Fitzgerald M (2004) Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn. J Neurosci 24:4749–4757

    Article  PubMed  CAS  Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  PubMed  CAS  Google Scholar 

  • Boue-Grabot E, Toulme E, Emerit MB et al. (2004) Subunit-specific coupling between gamma-aminobutyric acid type A and P2X2 receptor channels. J Biol Chem 279:52517–52525

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Wendt A, Karanauskaite J et al. (2007) Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells. J Gen Physiol 129:221–231

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1:239–248

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2004) Cotransmission. Curr Opin Pharmacol 4:47–52

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27:166–176

    Article  PubMed  CAS  Google Scholar 

  • Chery N, de Koninck Y (1999) Junctional versus extrajunctional glycine and GABA(A) receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord. J Neurosci 19:7342–7355

    PubMed  CAS  Google Scholar 

  • Collo G, North RA, Kawashima E et al. (1996) Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507

    PubMed  CAS  Google Scholar 

  • Dale HH (1935) Pharmacology and nerve endings. Proc Roy Soc Med 18:319–322

    Google Scholar 

  • De Roo M, Rodeau JL, Schlichter R (2003) Dehydroepiandrosterone potentiates native ionotropic ATP receptors containing the P2X2 subunit in rat sensory neurones. J Physiol 552:59–71

    Article  PubMed  Google Scholar 

  • Duarte CB, Santos PF, Carvalho AP (1999) Corelease of two functionally opposite neurotransmitters by retinal amacrine cells: experimental evidence and functional significance. J Neurosci Res 58:475–479

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17:7673–7682

    PubMed  CAS  Google Scholar 

  • Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625–633

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald M (2005) The development of nociceptive circuits. Nat Rev Neurosci 6:507–520

    Article  PubMed  CAS  Google Scholar 

  • Gandhi SP, Stevens CF (2003) Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423:607–613

    Article  PubMed  CAS  Google Scholar 

  • Ghildyal P, Palani D, Manchanda R (2006) Post- and prejunctional consequences of ecto-ATPase inhibition: electrical and contractile studies in guinea-pig vas deferens. J Physiol 575:469–480

    Article  PubMed  CAS  Google Scholar 

  • Gualix J, Pintor J, Miras-Portugal MT (1999) Characterization of nucleotide transport into rat brain synaptic vesicles. J Neurochem 73:1098–1104

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez R (2000) Seizures induce simultaneous GABAergic and glutamatergic transmission in the dentate gyrus-CA3 system. J Neurophysiol 84:3088–3090

    PubMed  CAS  Google Scholar 

  • Gutierrez R (2002) Activity-dependent expression of simultaneous glutamatergic and GABAergic neurotransmission from the mossy fibers in vitro. J Neurophysiol 87:2562–2570

    PubMed  CAS  Google Scholar 

  • Gutierrez R (2005) The dual glutamatergic-GABAergic phenotype of hippocampal granule cells. Trends Neurosci 28:297–303

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez R, Romo-Parra H, Maqueda J et al. (2003) Plasticity of the GABAergic phenotype of the “glutamatergic” granule cells of the rat dentate gyrus. J Neurosci 23:5594–5598

    PubMed  CAS  Google Scholar 

  • Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  PubMed  CAS  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  PubMed  CAS  Google Scholar 

  • Hugel S, Schlichter R (2000) Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons. J Neurosci 20:2121–2130

    PubMed  CAS  Google Scholar 

  • Hugel S, Schlichter R (2003) Convergent control of synaptic GABA release from rat dorsal horn neurones by adenosine and GABA autoreceptors. J Physiol 551:479–489

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Oomura Y, Yakushiji T et al. (1986) Intracellular calcium ions decrease the affinity of the GABA receptor. Nature 324:156–158

    Article  PubMed  CAS  Google Scholar 

  • Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 2:241–245

    Article  PubMed  CAS  Google Scholar 

  • Jo YH, Role LW (2002a) Cholinergic modulation of purinergic and GABAergic cotransmission at in vitro hypothalamic synapses. J Neurophysiol 88:2501–2508

    Google Scholar 

  • Jo YH, Role LW (2002b) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22:4794–4804

    Google Scholar 

  • Jo YH, Stoeckel ME, Schlichter R (1998a) Electrophysiological properties of cultured neonatal rat dorsal horn neurons containing GABA and met-enkephalin-like immunoreactivity. J Neurophysiol 79:1583–1586

    Google Scholar 

  • Jo YH, Stoeckel ME, Freund-Mercier MJ et al. (1998b) Oxytocin modulates glutamatergic synaptic transmission between cultured neonatal spinal cord dorsal horn neurons. J Neurosci 18:2377–2386

    Google Scholar 

  • Johnson MD (1994) Synaptic glutamate release by postnatal rat serotonergic neurons in microculture. Neuron 12:433–442

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Jiang L, Goldman SA et al. (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692

    Article  PubMed  CAS  Google Scholar 

  • Karanjia R, Garcia-Hernandez LM, Miranda-Morales M et al. (2006) Cross-inhibitory interactions between GABAA and P2X channels in myenteric neurones. Eur J Neurosci 23:3259–3268

    Article  PubMed  Google Scholar 

  • Keller AF, Breton JD, Schlichter R et al. (2004) Production of 5alpha-reduced neurosteroids is developmentally regulated and shapes GABA(A) miniature IPSCs in lamina II of the spinal cord. J Neurosci 24:907–915

    Article  PubMed  CAS  Google Scholar 

  • Keller AF, Coull JA, Chery N et al. (2001) Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J Neurosci 21:7871–7880

    PubMed  CAS  Google Scholar 

  • Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    Article  PubMed  CAS  Google Scholar 

  • Kibaly C, Patte-Mensah C, Mensah-Nyagan AG (2005) Molecular and neurochemical evidence for the biosynthesis of dehydroepiandrosterone in the adult rat spinal cord. J Neurochem 93:1220–1230

    Article  PubMed  CAS  Google Scholar 

  • Labrakakis C, Tong CK, Weissman T et al. (2003) Localization and function of ATP and GABAA receptors expressed by nociceptors and other postnatal sensory neurons in rat. J Physiol 549:131–142

    Article  PubMed  CAS  Google Scholar 

  • Llano I, Leresche N, Marty A (1991) Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6:565–574

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Perl ER (2003) A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J Neurosci 23:8752–8758

    PubMed  CAS  Google Scholar 

  • Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164

    Article  PubMed  CAS  Google Scholar 

  • Mohler H, Fritschy JM, Crestani F et al. (2004) Specific GABA(A) circuits in brain development and therapy. Biochem Pharmacol 68:1685–1690

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Heuss C, Gahwiler BH et al. (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535:115–123

    Article  PubMed  CAS  Google Scholar 

  • Moss SJ, Smart TG (1996) Modulation of amino acid-gated ion channels by protein phosphorylation. Int Rev Neurobiol 39:1–52

    Article  PubMed  CAS  Google Scholar 

  • Moss SJ, Smart TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2:240–250

    Article  PubMed  CAS  Google Scholar 

  • Mouginot D, Feltz P, Schlichter R (1991) Modulation of GABA-gated chloride currents by intracellular Ca2+ in cultured porcine melanotrophs. J Physiol 437:109–132

    PubMed  CAS  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  PubMed  CAS  Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  PubMed  CAS  Google Scholar 

  • Owens DF, Boyce LH, Davis MB et al. (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423

    PubMed  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A et al. (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–265

    Article  PubMed  CAS  Google Scholar 

  • Poisbeau P, Patte-Mensah C, Keller AF et al. (2005) Inflammatory pain upregulates spinal inhibition via endogenous neurosteroid production. J Neurosci 25:11768–11776

    Article  PubMed  CAS  Google Scholar 

  • Rathbone MP, Middlemiss PJ, Gysbers JW et al. (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690

    Article  PubMed  CAS  Google Scholar 

  • Rivera C, Voipio J, Payne JA et al. (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  PubMed  CAS  Google Scholar 

  • Robertson SJ, Edwards FA (1998) ATP and glutamate are released from separate neurones in the rat medial habenula nucleus: frequency dependence and adenosine-mediated inhibition of release. J Physiol 508 (Pt 3):691–701

    Article  PubMed  CAS  Google Scholar 

  • Rubio ME, Soto F (2001) Distinct Localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci 21:641–653

    PubMed  CAS  Google Scholar 

  • Schlichter R, Keller AF, De Roo M et al. (2006) Fast nongenomic effects of steroids on synaptic transmission and role of endogenous neurosteroids in spinal pain pathways. J Mol Neurosci 28:33–51

    Article  PubMed  CAS  Google Scholar 

  • Semyanov A, Walker MC, Kullmann DM et al. (2004) Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci 27:262–269

    Article  PubMed  CAS  Google Scholar 

  • Shiokawa H, Nakatsuka T, Furue H et al. (2006) Direct excitation of deep dorsal horn neurones in the rat spinal cord by the activation of postsynaptic P2X receptors. J Physiol 573:753–763

    Article  PubMed  CAS  Google Scholar 

  • Sokolova E, Nistri A, Giniatullin R (2001) Negative cross talk between anionic GABAA and cationic P2X ionotropic receptors of rat dorsal root ganglion neurons. J Neurosci 21:4958–4968

    PubMed  CAS  Google Scholar 

  • Sperlagh B, Vizi ES (1996) Neuronal synthesis, storage and release of ATP. Sem Neurosci 8:175–186

    Article  CAS  Google Scholar 

  • Stanfa LC, Kontinen VK, Dickenson AH (2000) Effects of spinally administered P2X receptor agonists and antagonists on the responses of dorsal horn neurones recorded in normal, carrageenan-inflamed and neuropathic rats. Br J Pharmacol 129:351–359

    Article  PubMed  CAS  Google Scholar 

  • Todorov LD, Mihaylova-Todorova S, Westfall TD et al. (1997) Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 387:76–79

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Shigemoto-Mogami Y, Koizumi S et al. (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  PubMed  CAS  Google Scholar 

  • Westfall DP, Todorov LD, Mihaylova-Todorova ST (2002) ATP as a cotransmitter in sympathetic nerves and its inactivation by releasable enzymes. J Pharmacol Exp Ther 303:439–444

    Article  PubMed  CAS  Google Scholar 

  • Wong AY, Burnstock G, Gibb AJ (2000) Single channel properties of P2X ATP receptors in outside-out patches from rat hippocampal granule cells. J Physiol 527 Pt 3:529–547

    Article  Google Scholar 

  • Yaksh TL (1999) Spinal systems and pain processing: development of novel analgesic drugs with mechanistically defined models. Trends Pharmacol Sci 20:329–337

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H (1996) Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 49:589–618

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from Centre National de la Recherche Scientifique (CNRS), French Ministry of Education and Research, University Louis Pasteur, Institut UPSA de la Douleur, DRTC and American Diabetes Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schlichter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hugel, S., Jo, Y., Schlichter, R. (2009). Synaptic Co-Release of ATP and GABA. In: Gutierrez, R. (eds) Co-Existence and Co-Release of Classical Neurotransmitters. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09622-3_11

Download citation

Publish with us

Policies and ethics