Skip to main content

Mouse Mutations Disrupting Somitogenesis and Vertebral Patterning

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 638))

Abstract

The mouse was one of the first model organisms used in genetic analysis, beginning in 1902 with the studies of inheritance carried out by William E. Castle, Director of the Bussey Institute at Harvard1. The first mutations identified derived from mouse fanciers, who primarily selected coat color variants or neurobehavioral triats. However, disruptions affecting the axial skeleton were also reported early in the century. For example, the classic brachyury (T) short tail mutant was identified in a laboratory stock by Dobrovolskaïa-Zavadskaïa in 1927 and was subsequently cloned and found to be a member of the T-box family of transcription factors, required for the formation and differentiation of paraxial mesoderm2. Spontaneous mutations causing vertebral defects, including undulated (Pax1 un) and pudgy (Dll3 pu), have also been cloned and found to encode genes involved in somite patterning3,4. More recently, advances in genetic technologies have greatly expanded the number of mouse mutations with somite defects. These approaches include use of homologous recombination in embryonic stem (ES) cell lines to generate “knock-out” and “knock-in” mice, transgenic insertion of dominant-negative alleles and chemical mutagenesis by agents such as N-ethyl-N-nitrosourea (ENU). Mouse mutant phenotypes and signaling pathways have been studied and characterized through analysis of double mutants. These genetic studies in the mouse have yielded a tremendous amount of information about the process of mammalian somitogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Beck JA, Lloyd S, Hafezparast M et al. Genealogies of mouse inbred strains. Nat Genet 2000; 24:23–5.

    Article  PubMed  CAS  Google Scholar 

  2. Kispert A, Hermann BG. The Brachyury gene encodes a novel DNA binding protein. EMBO J 1993; 12:4898–9.

    PubMed  CAS  Google Scholar 

  3. Balling R, Deutsch U, Gruss P. undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax 1. Cell 1988; 55:531–5.

    Article  PubMed  CAS  Google Scholar 

  4. Kusumi K, Sun ES, Kerrebrock AW et al. The mouse pudgy mutation disrupts Delta homologue DII3 and initiation of early somite boundaries. Nat Genet 1998; 19:274–8.

    Article  PubMed  CAS  Google Scholar 

  5. Tam PP. The control of somitogenesis in mouse embryos. J Embryol Exp Morphol 1981; 65 Suppl:103–28.

    PubMed  Google Scholar 

  6. Cooke J. The problem of periodic patterns in embryos. Philos Trans R Soc Lond B Biol Sci 1981; 295:509–24.

    Article  PubMed  CAS  Google Scholar 

  7. Cooke J. A gene that resuscitates a theory-somitogenesis and a molecular oscillator. Trends Genet 1998; 14:85–8.

    Article  PubMed  CAS  Google Scholar 

  8. Dale KJ, Pourquie O. A clock-work somite. Bioessays 2000; 22:72–83.

    Article  PubMed  CAS  Google Scholar 

  9. Keynes RJ, Stern CD. Mechanisms of vertebrate segmentation. Development 1988; 103:413–29.

    PubMed  CAS  Google Scholar 

  10. Kulesa PM, Fraser SE. Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 2002; 298:991–5.

    Article  PubMed  CAS  Google Scholar 

  11. Keynes RJ, Stern CD. Segmentation in the vertebrate nervous system. Nature 1984; 310:786–9.

    Article  PubMed  CAS  Google Scholar 

  12. Brand-Saberi B, Christ B. Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol 2000; 48:1–42.

    Article  PubMed  CAS  Google Scholar 

  13. Aulehla A, Johnson RL. Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation. Dev Biol 1999; 207:49–61.

    Article  PubMed  CAS  Google Scholar 

  14. Bessho Y, Sakata R, Komatsu S, et al. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 2001b; 15:2642–7.

    Article  PubMed  CAS  Google Scholar 

  15. Dequeant ML, Glynn E, Gaudenz K et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 2006; 314:1595–8.

    Article  PubMed  CAS  Google Scholar 

  16. Forsberg H, Crozet F, Brown NA. Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr Biol 1998; 8:1027–30.

    Article  PubMed  CAS  Google Scholar 

  17. Jiang YJ, Aerne BL, Smithers L et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 2000; 408:475–9.

    Article  PubMed  CAS  Google Scholar 

  18. Jouve C, Palmeirim I, Henrique D et al. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 2000; 127:1421–9.

    PubMed  CAS  Google Scholar 

  19. Leimeister C, Dale K, Fischer A et al. Oscillating expression of c-Hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors. Dev Biol 2000; 227:91–103.

    Article  PubMed  CAS  Google Scholar 

  20. Leimeister C, Externbrink A, Klamt B et al. Hey genes: a novel subfamily of hairy-and Enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Dev 1999; 85:173–7.

    Article  PubMed  CAS  Google Scholar 

  21. McGrew MJ, Dale JK, Fraboulet S et al. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr Biol 1998; 8:979–82.

    Article  PubMed  CAS  Google Scholar 

  22. Palmeirim I, Henrique D, Ish-Horowicz D et al. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 1997; 91:639–48.

    Article  PubMed  CAS  Google Scholar 

  23. Bettenhausen B, Hrabe de Angelis M, Simon D et al. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 1995; 121:2407–18.

    PubMed  CAS  Google Scholar 

  24. de la Pompa JL, Wakeham A, Correia KM et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 1997; 124:1139–48.

    PubMed  Google Scholar 

  25. Koo BK, Lim HS, Song R et al. Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 2005; 132:3459–70.

    Article  PubMed  CAS  Google Scholar 

  26. Nakagawa O, McFadden DG, Nakagawa M et al. Members of the HRT family of basic helix-loop-helix proteins act as transcriptional repressors downstream of Notch signaling. Proc Natl Acad Sci USA 2000; 97:13655–60.

    Article  PubMed  CAS  Google Scholar 

  27. Dunwoodie SL, Henrique D, Harrison SM et al. Mouse Dll:3 a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 1997; 124:3065–76.

    PubMed  CAS  Google Scholar 

  28. Reaume AG, Conlon RA, Zirngibl R et al. Expression analysis of a Notch homologue in the mouse embryo. Dev Biol 1992; 154:377–87.

    Article  PubMed  CAS  Google Scholar 

  29. Bessho Y, Miyoshi G, Sakata R et al. Hes: 7a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm. Genes Cells 2001a; 6:175–85.

    Article  PubMed  CAS  Google Scholar 

  30. Shi S, Stanley P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci USA 2003; 100:5234–9.

    Article  PubMed  CAS  Google Scholar 

  31. Williams R, Lendahl U, Lardelli M et al. Complementary and combinatorial patterns of Notch gene family expression during early mouse development. Mech Dev 1995; 53:357–68.

    Article  PubMed  CAS  Google Scholar 

  32. Wong PC, Zheng H, Chen H et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 1997; 387:288–92.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang N, Gridley T. Defects in somite formation in lunatic fringe-deficient mice. Nature 1998; 394:374–7.

    Article  PubMed  CAS  Google Scholar 

  34. Conlon RA, Reaume AG, Rossant J. Notch1 is required for the coordinate segmentation of somites. Development 1995; 121:1533–45.

    PubMed  CAS  Google Scholar 

  35. Huppert SS, Le A, Schroeter EH et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 2000; 405:966–70.

    Article  PubMed  CAS  Google Scholar 

  36. McCright B, Gao X, Shen L et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 2001; 128:491–502.

    PubMed  CAS  Google Scholar 

  37. Dunwoodie SL, Clements M, Sparrow DB et al. Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 2002; 129:1795–806.

    PubMed  CAS  Google Scholar 

  38. Hrabe de Angelis M, McIntyre J, 2nd and Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 1997; 386:717–21.

    Article  PubMed  CAS  Google Scholar 

  39. Shinkai Y, Tsuji T, Kawamoto Y et al. New mutant mouse with skeletal deformities caused by mutation in delta like 3 (Dll3) gene. Exp Anim 2004; 53:129–36.

    Article  PubMed  CAS  Google Scholar 

  40. Xue Y, Gao X, Lindsell CE et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged.1 Hum Mol Genet 1999; 8:723–30.

    Article  PubMed  CAS  Google Scholar 

  41. Emerick KM, Rand EB, Goldmuntz E et al. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 1999; 29:822–9.

    Article  PubMed  CAS  Google Scholar 

  42. Fortini ME. Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol 2002; 3:673–84.

    Article  PubMed  CAS  Google Scholar 

  43. Donoviel DB, Hadjantonakis AK, Ikeda M et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev 1999; 13:2801–10.

    Article  PubMed  CAS  Google Scholar 

  44. Koizumi K, Nakajima M, Yuasa S. The role of presenilin 1 during somite segmentation. Development 2001; 128:1391–402.

    PubMed  CAS  Google Scholar 

  45. Li T, Ma G, Cai H et al. Nicastrin is required for assembly of presenilin/gamma-secretase complexes to mediate Notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammals. J Neurosci 2003; 23:3272–7.

    PubMed  CAS  Google Scholar 

  46. Evrard YA, Lun Y, Aulehla A et al. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 1998; 394:377–81.

    Article  PubMed  CAS  Google Scholar 

  47. Serth K, Schuster-Gossler K, Cordes R et al. Transcriptional oscillation of lunatic fringe is essential for somitogenesis. Genes Dev 2003; 17:912–25.

    Article  PubMed  CAS  Google Scholar 

  48. Morales AV, Yasuda Y, Ish-Horowicz D. Periodic Lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to notch signaling. Dev Cell 2002; 3:63–74.

    Article  PubMed  CAS  Google Scholar 

  49. Cole SE, Levorse JM, Tilghman SM et al. Clock regulatory elements control cyclic expression of Lunatic fringe during somitogenesis. Dev Cell 2002; 3:75–84.

    Article  PubMed  CAS  Google Scholar 

  50. Ishibashi M, Moriyoshi K, Sasai Y et al. Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J 1994; 13:1799–805.

    PubMed  CAS  Google Scholar 

  51. Tomita K, Ishibashi M Nakahara K et al. Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 1996; 16:723–34.

    Article  PubMed  CAS  Google Scholar 

  52. Cau E, Gradwohl G, Casarosa S et al. Hes genes regulate sequential stages of neurogenesis in the olfactory epithelium. Development 2000; 127:2323–32.

    PubMed  CAS  Google Scholar 

  53. Ohtsuka T, Ishibashi M, Gradwohl G et al. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 1999; 18:2196–207.

    Article  PubMed  CAS  Google Scholar 

  54. Hirata H, Bessho Y, Kokubu H et al. Instability of Hes7 protein is crucial for the somite segmentation clock. Nat Genet 2004; 36:750–4.

    Article  PubMed  CAS  Google Scholar 

  55. Kokubo H, Lun Y, Johnson RL. Identification and expression of a novel family of bHLH cDNAs related to Drosophila hairy and enhancer of split. Biochem Biophys Res Commun 1999; 260:459–65.

    Article  PubMed  CAS  Google Scholar 

  56. Steidl C, Leimeister C, Klamt B et al. Characterization of the human and mouse HEY1, HEY2 and HEYL genes: cloning, mapping and mutation screening of a new bHLH gene family. Genomics 2000; 66:195–203.

    Article  PubMed  CAS  Google Scholar 

  57. Fischer A, Schumacher N, Maier M et al. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 2004; 18:901–11.

    Article  PubMed  CAS  Google Scholar 

  58. Gessler M, Knobeloch KP, Helisch A et al. Mouse gridlock: no aortic coarctation of deficiency, but fatal cardiac defects in Hey2-/-mice. Curr Biol 2002; 12:1601–4.

    Article  PubMed  CAS  Google Scholar 

  59. Oka C, Nakano T, Wakeham A et al. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 1995; 121:3291–301.

    PubMed  CAS  Google Scholar 

  60. Aulehla A, Wehrle C, Brand-Saberi B et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 2003; 4:395–406.

    Article  PubMed  CAS  Google Scholar 

  61. Suriben R, Fisher DA, Cheyette BN et al. Dact 1 presomitic mesoderm expression oscillates in phase with Axin2 in the somitogenesis clock of mice. Dev Dyn 2006; 235:3177–83.

    Article  PubMed  CAS  Google Scholar 

  62. Greco TL, Sussman DJ, Camper SA. Dishevelled-2 maps to human chromosome 17 and distal to Wnt3a and vestigial tail (vt) on mouse chromosome 11. Mamm Genome 1996; 7:475–6.

    Article  PubMed  CAS  Google Scholar 

  63. Takada S, Stark KL, Shea MJ et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 1994; 8:174–89.

    Article  PubMed  CAS  Google Scholar 

  64. Axelrod JD, Matsuno K, Artavanis-Tsakonas S et al. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science 1996; 271:1826–32.

    Article  PubMed  CAS  Google Scholar 

  65. Seidensticker MJ, Behrens J. Biochemical interactions in the wnt pathway. Biochim Biophys Acta 2000; 1495:168–82.

    Article  PubMed  CAS  Google Scholar 

  66. Kokubu C, Heinzmann U, Kokubu T et al. Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis. Development 2004; 131:5469–80.

    Article  PubMed  CAS  Google Scholar 

  67. Carter M, Chen X, Slowinska B et al. Crooked tail (Cd) model of human folate-responsive neural tube defects is mutated in Wnt coreceptor lipoprotein receptor-related protein 6. Proc Natl Acad Sci USA 2005; 102:12843–8.

    Article  PubMed  CAS  Google Scholar 

  68. MacDonald BT, Adamska M, Meisler MH. Hypomorphic expression of Dkk1 in the doubleridge mouse: dose dependence and compensatory interactions with Lrp6. Development 2004; 131:2543–52.

    Article  PubMed  CAS  Google Scholar 

  69. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci 2003; 116:2627–34.

    Article  PubMed  CAS  Google Scholar 

  70. Satoh W, Gotoh T, Tsunematsu Y et al. Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 2006; 133:989–99.

    Article  PubMed  CAS  Google Scholar 

  71. Oishi I, Suzuki H, Onishi N et al. The receptor tyrosine kinase Ror2 is involved in noncanonical Wnt5a/JNK signalling pathway. Genes Cells 2003; 8:645–54.

    Article  PubMed  CAS  Google Scholar 

  72. Schwabe GC, Trepczik B, Suring K et al. Ror2 knockout mouse as a model for the developmental pathology of autosomal recessive Robinow syndrome. Dev Dyn 2004; 229:400–10.

    Article  PubMed  CAS  Google Scholar 

  73. Saxton TM, Henkemeyer M, Gasca S et al. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J 1997; 16:2352–64.

    Article  PubMed  CAS  Google Scholar 

  74. Takeuchi S, Takeda K, Oishi I et al. Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 2000; 5:71–8.

    Article  PubMed  CAS  Google Scholar 

  75. Dubrulle J, McGrew MJ, Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 2001; 106:219–32.

    Article  PubMed  CAS  Google Scholar 

  76. Dubrulle J, Pourquie O. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 2004; 427:419–22.

    Article  PubMed  CAS  Google Scholar 

  77. Meyers EN, Lewandoski M, Martin GR. An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nat Genet 1998; 18:136–41.

    Article  PubMed  CAS  Google Scholar 

  78. Hoch RV, Soriano P. Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development. Development 2006; 133:663–73.

    Article  PubMed  CAS  Google Scholar 

  79. Diez del Corral R, Olivera-Martinez I, Goriely A. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation and segmentation during body axis extension. Neuron 2003; 40:65–79.

    Article  PubMed  CAS  Google Scholar 

  80. Sirbu IO, Duester G. Retinoic-acid signalling in node ectoderm and posterior neural plate directs left-right patterning of somitic mesoderm. Nat Cell Biol 2006; 8:271–7.

    Article  PubMed  CAS  Google Scholar 

  81. Vermot J, Gallego Llamas J, Fraulob V et al. Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo. Science 2005; 308:563–6.

    Article  PubMed  CAS  Google Scholar 

  82. Vermot J, Pourquie O. Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos. Nature 2005; 435:215–20.

    Article  PubMed  CAS  Google Scholar 

  83. Niederreither K, Subbarayan V, Dolle P et al. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 1999; 21:444–8.

    Article  PubMed  CAS  Google Scholar 

  84. McPherron AC, Lawler AM, Lee SJ. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet 1999; 22:260–4.

    Article  PubMed  CAS  Google Scholar 

  85. McMahon JA, Takada S, Zimmerman LB et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 1998; 12:1438–52.

    Article  PubMed  CAS  Google Scholar 

  86. Wijgerde M, Karp S, McMahon J et al. Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Dev Biol 2005; 286:149–57.

    Article  PubMed  CAS  Google Scholar 

  87. Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980; 287:795–801.

    Article  PubMed  CAS  Google Scholar 

  88. Buttitta L, Mo R, Hui CC et al. Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development 2003a; 130:6233–43.

    Article  PubMed  CAS  Google Scholar 

  89. Park S, Lee YJ, Lee HJ et al. B-cell translocation gene 2 (Btg2) regulates vertebral patterning by modulating bone morphogenetic protein/smad signaling. Mol Cell Biol 2004; 24:10256–62.

    Article  PubMed  CAS  Google Scholar 

  90. Sefton M, Sanchez S, Nieto MA. Conserved and divergent roles for members of the Snail family of transcription factors in the chick and mouse embryo. Development 1998; 125:3111–21.

    PubMed  CAS  Google Scholar 

  91. Dale JK, Malapert P, Chal J et al. Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev Cell 2006; 10:355–66.

    Article  PubMed  CAS  Google Scholar 

  92. Carver EA, Jiang R, Lan Y et al. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 2001; 21:8184–8.

    Article  PubMed  CAS  Google Scholar 

  93. Jiang R, Lan Y, Norton CR et al. The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 1998; 198:277–85.

    PubMed  CAS  Google Scholar 

  94. Bussen M, Petry M, Schuster-Gossler K et al. The T-box transcription factor Tbx18 maintains the separation of anterior and posterior somite compartments. Genes Dev 2004; 18:1209–21.

    Article  PubMed  CAS  Google Scholar 

  95. Nacke S, Schafer R, Habre de Angelis M et al. Mouse mutant rib-vertebrae (rv): a defect in somite polarity. Dev Dyn 2000; 219:192–200.

    Article  PubMed  CAS  Google Scholar 

  96. Watabe-Rudolph M, Schlautmann N, Papaioannou VE et al. The mouse rib-vertebrae mutation is a hypomorphic Tbx6 allele. Mech Dev 2002; 119:251–6.

    Article  PubMed  CAS  Google Scholar 

  97. White PH, Farkas DR, McFadden EE et al. Defective somite patterning in mouse embryos with reduced levels of Tbx6. Development 2003; 130:1681–90.

    Article  PubMed  CAS  Google Scholar 

  98. Beckers J, Schlautmann N, Gossler A. The mouse rib-vertebrae mutation disrupts anterior-posterior somite patterning and genetically interacts with a Deltal null allele. Mech Dev 2000; 95:35–46.

    Article  PubMed  CAS  Google Scholar 

  99. Krumlauf, R. Hox genes in vertebrate development. Cell 1994; 78:191–201.

    Article  PubMed  CAS  Google Scholar 

  100. Condie BG, Capecchi MR. Mice homozygous for a targeted disruption of Hoxd-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and the axis. Development 1993; 119:579–95.

    PubMed  CAS  Google Scholar 

  101. Lufkin T, Mark M, Hart CP et al. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 1992; 359:835–41.

    Article  PubMed  CAS  Google Scholar 

  102. Wellik DM, Capecchi MR. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 2003; 301:363–7.

    Article  PubMed  CAS  Google Scholar 

  103. Carapuco M, Novoa A, Bobola N et al. Hox genes specify vertebral types in the presomitic mesoderm. Genes Dev 2005; 19:2116–21.

    Article  PubMed  CAS  Google Scholar 

  104. Zakany J, Kmita M, Alarcon P et al. Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock. Cell 2001; 106:207–17.

    Article  PubMed  CAS  Google Scholar 

  105. Cordes R, Schuster-Gossler K, Serth K et al. Specification of vertebral identity is coupled to Notch signalling and the segmentation clock. Development 2004; 131:1221–33.

    Article  PubMed  CAS  Google Scholar 

  106. Chawengsaksophak K, de Graaff W, Rossant J et al. Cdx2 is essential for axial elongation in mouse development. Proc Natl Acad Sci USA 2004; 101:7641–5.

    Article  PubMed  CAS  Google Scholar 

  107. Mankoo BS, Skuntz S, Harrigan I et al. The concerted action of Meox homeobox genes is required upstream of genetic pathways essential for the formation, patterning and differentiation of somites. Development 2003; 130:4655–64.

    Article  PubMed  CAS  Google Scholar 

  108. Rodrigo I, Bovolenta P, Mankoo BS et al. Meox homeodomain proteins are required for Bapx1 expression in the sclerotome and activate its transcription by direct binding to its promoter. Mol Cell Biol 2004; 24:2757–66.

    Article  PubMed  CAS  Google Scholar 

  109. Leitges M, Neidhardt L, Haenig B et al. The paired homeobox gene Uncx4.1 specifies pedicles, transverse processes and proximal ribs of the vertebral column. Development 2000; 127:2259–67.

    PubMed  CAS  Google Scholar 

  110. Mansouri A, Voss AK, Thomas T et al. Uncx4.1 is required for the formation of the pedicles and proximal ribs and acts upstream of Pax9. Development 2000; 127:2251–8.

    PubMed  CAS  Google Scholar 

  111. Wassarman KM, Lewandoski M, Campbell K et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 1997; 124:2923–34.

    PubMed  CAS  Google Scholar 

  112. Balling R. The undulated mouse and the development of the vertebral column. Is there a human PAX-1 homologue? Clin Dysmorphol 1994; 3:185–91.

    Article  PubMed  CAS  Google Scholar 

  113. Chi N, Epstein JA. Getting your Pax straight: Pax proteins in development and disease. Trends Genet 2002; 18:41–7.

    Article  PubMed  CAS  Google Scholar 

  114. Schubert FR, Tremblay P, Mansouri A et al. Early mesodermal phenotypes in splotch suggest a role for Pax3 in the formation of epithelial somites. Dev Dyn 2001; 222:506–21.

    Article  PubMed  CAS  Google Scholar 

  115. Kume T, Deng KY, Winfrey V et al. The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 1998; 93:985–96.

    Article  PubMed  CAS  Google Scholar 

  116. Kume T, Jiang H, Topczewska JM et al. The murine winged helix transcription factors, Foxc1 and Foxc,2 are both required for cardiovascular development and somitogenesis. Genes Dev 2001; 15:2470–82.

    Article  PubMed  CAS  Google Scholar 

  117. Saga Y, Miyagawa-Tomita S, Takagi A et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 1999; 126:3437–47.

    PubMed  CAS  Google Scholar 

  118. Saga Y, Hata N, Koseki H et al. Mesp:2 a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 1997; 11:1827–39.

    Article  PubMed  CAS  Google Scholar 

  119. Takahashi Y, Inoue T, Gossler A et al. Feedback loops comprising Dll1, Dll3 and Mesp2 and differential involvement of Psen1 are essential for rostrocaudal patterning of somites. Development 2003; 130:4259–68.

    Article  PubMed  CAS  Google Scholar 

  120. Burgess R, Rawls A, Brown D et al. Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 1996; 384:570–3.

    Article  PubMed  CAS  Google Scholar 

  121. Johnson J, Rhec J, Parsons SM et al. The anterior/posterior polarity of somites is disrupted in paraxis-deficient mice. Dev Biol 2001; 229:176–87.

    Article  PubMed  CAS  Google Scholar 

  122. Yoon JK, Wold B. The bHLH regulator pMesogenin1 is required for maturation and segmentation of paraxial mesoderm. Genes Dev 2000; 14:3204–14.

    Article  PubMed  CAS  Google Scholar 

  123. Rhee J, Takahashi Y, Saga Y et al. The protocadherin pape is involved in the organization of the epithelium along the segmental border during mouse somitogenesis. Dev Biol 2003; 254:248–61.

    Article  PubMed  CAS  Google Scholar 

  124. Kim S, Kettlewell JR, Anderson RC et al. Sexually dimorphic expression of multiple doublesex-related genes in the embryonic mouse gonad. Gene Expr Patterns 2003; 3:77–82.

    Article  PubMed  CAS  Google Scholar 

  125. Meng A, Moore B, Tang H et al. A Drosophila doublesex-related gene, terra, is involved in somitogenesis in vertebrates. Development 1999; 126:1259–68.

    PubMed  CAS  Google Scholar 

  126. Seo KW, Wang Y, Kokubo H et al. Targeted disruption of the DM domain containing transcription factor Dmrt2 reveals an essential role in somite patterning. Dev Biol 2006; 290:200–10.

    Article  PubMed  CAS  Google Scholar 

  127. Maruhashi M, Van De Putte T, Huylebroeck D et al. Involvement of SIP1 in positioning of somite boundaries in the mouse embryo. Dev Dyn 2005; 234:332–8.

    Article  PubMed  CAS  Google Scholar 

  128. Cacheux V, Dastot-Le Moal F, Kaariainen H et al. Loss-of-function mutations in SIP1 Smad interacting protein 1 result in a syndromic Hirschsprung disease. Hum Mol Genet 2001; 10:1503–10.

    Article  PubMed  CAS  Google Scholar 

  129. Barrionuevo F, Taketo MM, Scherer G et al. Sox9 is required for notochord maintenance in mice. Dev Biol 2006; 295:128–40.

    Article  PubMed  CAS  Google Scholar 

  130. Sirois J, Cote JF, Charest A et al. Essential function of PTP-PEST during mouse embryonic vascularization, mesenchyme formation, neurogenesis and early liver development. Mech Dev doi:10.1016/j.mod.2006.08.011.

    Google Scholar 

  131. Biben C, Stanley E, Fabri L et al. Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev Biol 1998; 194:135–51.

    Article  PubMed  CAS  Google Scholar 

  132. Simpson EH, Johnson DK, Hunsicker P et al. The mouse Cer1 (Cerberus related or homologue) gene is not required for anterior pattern formation. Dev Biol 1999; 213:202–6.

    Article  PubMed  CAS  Google Scholar 

  133. Chen ZF, Behringer RR. twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 1995; 9:686–99.

    Article  PubMed  CAS  Google Scholar 

  134. Helmbacher F, Schneider-Maunoury S, Topilko P et al. Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. Development 2000; 127:3313–24.

    PubMed  CAS  Google Scholar 

  135. Flint OP, Ede DA. Facial development in the mouse; a comparison between normal and mutant (amputated) mouse embryos. J Embryol Exp Morphol 1978; 48:249–67.

    PubMed  CAS  Google Scholar 

  136. Flint OP, Ede DA, Wilby OK et al. Control of somite number in normal and amputated mutant mouse embryos: an experimental and a theoretical analysis. J Embryol Exp Morphol 1978; 45:189–202.

    PubMed  CAS  Google Scholar 

  137. Grüneberg H. Genetical studies on the skeleton of the mouse. XVI. Tail-kinds. J Genet 1955; 53:536–550.

    Article  Google Scholar 

  138. Miyoshi H, Kon Y, Seo KW et al. Jumbled spine and ribs (Jsr): a new mutation on mouse chromosome 5. Mamm Genome 1999; 10:213–7.

    Article  PubMed  CAS  Google Scholar 

  139. Morgan WC. A new crooked tail mutation involving distinctive pleiotropism. J Genet 1954; 52:354–373.

    Article  Google Scholar 

  140. Theiler K, Varnum D, Stevens LC. Development of rachiterata, a mutation in the house mouse with 6 cervical vertebrae. Z Anat Entwicklungsgesch 1974; 145:75–80.

    Article  PubMed  CAS  Google Scholar 

  141. Theiler K, Varnum DS, Southard JL et al. Malformed vertebrae: a new mutant with the wirbel-rippen syndrom in the mouse. Anat Embryol (Berl) 1975; 147:161–6.

    Article  CAS  Google Scholar 

  142. Theiler K, Stevens LC. The development of rib fusions, a mutation in the house mouse. Am J Anat 1960; 106:171–83.

    Article  PubMed  CAS  Google Scholar 

  143. Okano S, Asano A, Kon Y et al. Genetic analysis of jumbled spine and ribs (Jsr) mutation affecting the vertebral development in mice. Biochem Genet 2002; 40:311–22.

    Article  PubMed  CAS  Google Scholar 

  144. Okano S, Asano A, Sasaki N et al. Examination of the Lunatic fringe and Uncx4.1 expression by whole-mount in situ hybridization in the embryo of the CKH-Jsr (jumbled spine and ribs) mouse. Jpn J Vet Res 2005; 52:145–9.

    PubMed  Google Scholar 

  145. Rossant J, McKerlie C. Mouse-based phenogenomics for modelling human disease. Trends Mol Med 2001; 7:502–7.

    Article  PubMed  CAS  Google Scholar 

  146. Bulman MP, Kusumi K, Frayling TM et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 2000; 24:438–41.

    Article  PubMed  CAS  Google Scholar 

  147. Sparrow DB, Chapman G, Wouters MA et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 2006; 78:28–37.

    Article  PubMed  CAS  Google Scholar 

  148. Sparrow DB, Clements M, Withington SL et al. Diverse requirements for Notch signalling in mammals. Int J Dev Biol 2002; 46:365–74.

    PubMed  CAS  Google Scholar 

  149. Turnpenny PD, Whittock N, Duncan J et al. Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J Med Genet 2003; 40:333–9.

    Article  PubMed  CAS  Google Scholar 

  150. Whittock NV, Sparrow DB, Wouters MA et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet 2004; 74:1249–54.

    Article  PubMed  CAS  Google Scholar 

  151. McGaughran JM, Oates A, Donnai D et al. Mutations in PAX1 may be associated with Klippel-Feil syndrome. Eur J Human Genet 2003; 11:468–74.

    Article  CAS  Google Scholar 

  152. Turnpenny PD, Kusumi K. Delta-like 3 and spondylocostal dysostosis. New York: Oxford University Press 2004.

    Google Scholar 

  153. Schaffer AA, Kaplan FS, Tracy MR et al. Developmental anomalies of the cervical spine in patients with fibrodysplasia ossificans progressiva are distinctly different from those in patients with Klippel-Feil syndrome: clues from the BMP signaling pathway. Spine 2005; 30:1379–85.

    Article  PubMed  Google Scholar 

  154. Shore EM, Xu M, Feldman GJ et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 2006; 38:525–7.

    Article  PubMed  CAS  Google Scholar 

  155. Buttitta L, Tanaka TS, Chen A et al. Microarray analysis of somitogenesis reveals novel targets of different WNT signaling pathways in the somitic mesoderm. Dev Biol 2003b; 258:91–104.

    Article  PubMed  CAS  Google Scholar 

  156. Machka C, Kersten M, Zobawa M et al. Identification of Dll1 (Delta1) target genes during mouse embryogenesis using differential expression profiling. Gene Expr Patterns 2005; 6:94–101.

    Article  PubMed  CAS  Google Scholar 

  157. Higashi Y, Maruhashi M, Nelles L et al. Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genesis 2002; 32:82–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kusumi, K., Sewell, W., O’Brien, M.L. (2008). Mouse Mutations Disrupting Somitogenesis and Vertebral Patterning. In: Maroto, M., Whittock, N.V. (eds) Somitogenesis. Advances in Experimental Medicine and Biology, vol 638. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09606-3_8

Download citation

Publish with us

Policies and ethics