Skip to main content

Animal Models of Xeroderma Pigmentosum

  • Chapter
  • 1136 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 637))

Abstract

Xeroderma pigmentosum (XP) is a rare autosomal disorder characterized by hypersensitivity of the skin to sunlight specifically to ultraviolet (UV) which can lead to high rate of susceptibility to skin cancer and other kinds of neurodegenerative problems. Compared to normal individuals, XP patients have a more than 1000-fold increased risk of developing skin cancer on sun-exposed areas of their body. Genetic and molecular analyses have revealed that the repair of UV-induced DNA damage is impaired in XP patients owing to mutations in genes that form part of a DNA-repair pathway known as nucleotide excision repair (NER). XP is, therefore, regarded as a convincing human example of the link between DNA repair deficiency and cancer risk. However, this relationship has not been examined in detail in humans due to the limited number of XP patients and their frequent early death due to skin cancer and neurological problems. For these reasons are required the generation of equivalent animal models to determine their exact molecular mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Copeland NE, Hanke CW, Michalak JA. The molecular basis of xeroderma pigmentosum. Dermatol Surg 1997; 23:447–455.

    Article  PubMed  CAS  Google Scholar 

  2. Hoeijmakers JH. Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Eur J Cancer 1994; 30:1912–1921.

    Article  Google Scholar 

  3. Friedberg EC, Walker GC, Siede W. DNA repair and mutagenesis. Washington, DC: American Society for Microbiology Press, 1995:633–672.

    Google Scholar 

  4. Volker M, Moné MJ, Karmakar P et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 2001; 8:213–224.

    Article  PubMed  CAS  Google Scholar 

  5. Nakane H, Takeuchi S, Yuba S et al. High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumors in mice lacking the xeroderma pigmentosum group A gene. Nature 1995; 377:165–168.

    Article  PubMed  CAS  Google Scholar 

  6. Yamazaki F, Okamoto H, Matsumura Y et al. Development of a new mouse model (Xeroderma Pigmentosum A-Deficient, Stem Cell Factor-Transgenic) of ultraviolet B-induced melanoma. J Invest Dermatol 2005; 125:521–525.

    Article  PubMed  CAS  Google Scholar 

  7. A de Vries CTM, van Oostrom PM, Dortant RB et al. Spontaneous liver tumors and benzo[α]pyrene-induced lymphomas in XPA-deficient mice. Mol Carcinog 1997; 19:46–53.

    Article  PubMed  Google Scholar 

  8. van Oostrom CT, Boeve M, van den Berg J et al. Effect of heterozygous loss of p53 on benzo[α]pyrene-induced mutations and tumors in DNA repair-deficient XPA mice. Environ Mol Mutagen 1999; 34:124–130.

    Article  PubMed  Google Scholar 

  9. Hoogervorst EM, de Vries A, Beems RB et al. Combined oral benzo[α]pyrene and inhalatory ozone exposure have no effect on lung tumor development in DNA repair-deficient Xpa mice. Carcinogenesis 2003; 24:613–619.

    Article  PubMed  CAS  Google Scholar 

  10. Cleaver JE, Kraemer KH. Xeroderma pigmentosum. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic Basis of Inherited Disease. New York: McGraw-Hill, 1989:2949–2971.

    Google Scholar 

  11. Cheo DL, Ruven HJT, Meira LB et al. Characterization of defective nucleotide excision repair in Xpc mutant mice generated by targeted gene replacement. Mutat Res 1997; 374:1–9.

    PubMed  CAS  Google Scholar 

  12. Cheo DL, Meira LB, Hammer RE et al. Synergistic interactions between Xpc and p53 mutations in double mutant mice: neural tube abnormalities and accelerated UV radiation-induced skin cancer. Curr Biol 1996; 6:1691–1694.

    Article  PubMed  CAS  Google Scholar 

  13. Cheo DL, Meira LB, Burns DK et al. Ultraviolet-B radiation-induced skin cancer in mice defective in the Xpc, Trp53 and Apex (HAP1) genes: genotype-specific effects on cancer predisposition and pathology of tumors. Cancer Res 2000; 60:1580–1584.

    PubMed  CAS  Google Scholar 

  14. Cheo DL, Burns DK, Meira LB et al. Mutational inactivation of the xeroderma pigmentosum group C (Xpc) gene confers predisposition to acetyl-aminofluorene-induced liver and lung cancer and alters the spectrum of spontaneous cancer in Trp53 mice. Cancer Res 1999; 59:771–775.

    PubMed  CAS  Google Scholar 

  15. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411:366–374.

    Article  PubMed  CAS  Google Scholar 

  16. Christmann M, Tomicic MT, Roos WP et al. Mechanisms of human DNA repair: an update. Toxicology 2003; 193:3–34.

    Article  PubMed  CAS  Google Scholar 

  17. Friedberg EC. How nucleotide excision repair protects against cancer, Nat Rev Cancer 2001; 1:22–32.

    Article  PubMed  CAS  Google Scholar 

  18. Hanawalt PC, Ford JM, Lloyd DR: Functional characterization of global genomic DNA repair and its implications for cancer. Mutat Res 2003; 544:107–114.

    Article  PubMed  CAS  Google Scholar 

  19. Van Hoffen A, Balajee AS, van Zeeland AA et al. Nucleotide excision repair and its interplay with transcription. Toxicology 2003; 193:79–90.

    Article  PubMed  Google Scholar 

  20. Mellon I, Spivak G, Hanawalt PC. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 1987; 51:241–249.

    Article  PubMed  CAS  Google Scholar 

  21. Bohr VA, Smith CA, Okumoto DS et al. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 1985; 40:359–369.

    Article  PubMed  CAS  Google Scholar 

  22. Murai M, Enokido Y, Inamura N et al. Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne Syndrome Group B DNA repair genes. PNAS 2001; 98:13379–13384.

    Article  PubMed  CAS  Google Scholar 

  23. Khan GQ, Hassan G, Yaseen M et al. Cockayne syndrome. J Assoc Physicians India 2000; 48:1119–1121.

    PubMed  CAS  Google Scholar 

  24. Menges-Wenzel EM, Debus O, Strater R et al. Cockayne syndrome with marked cerebral symptoms. Klin Pasiatr 2001; 213:134–138.

    Article  CAS  Google Scholar 

  25. Lalle P, Nouspikel T, Constantinou A et al. The founding members of xeroderma pigmentosum group G produce XPG protein with severely impaired endonuclease activity. J Invest Dermatol 2002; 118:344–351.

    Article  PubMed  CAS  Google Scholar 

  26. Vermeulen W, Scott RJ, Rodgers S et al. Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3. Am J Hum Genet 1994; 54:191–200.

    PubMed  CAS  Google Scholar 

  27. Sancar A. DNA excision repair. Annu Rev Biochem 1996; 65:43–81.

    Article  PubMed  CAS  Google Scholar 

  28. Harada YN, Shiomi N, Koike M et al. Postnatal growth failure, short life span and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Mol Cell Biol 1999; 19:2366–2372.

    PubMed  CAS  Google Scholar 

  29. Sun XZ, Harada YN, Zhang R et al. A genetic mouse model carrying the nonfunctional xeroderma pigmentosum group G gene. Con Anom 2003; 43:133–139.

    Article  CAS  Google Scholar 

  30. Sun XZ, Harada YN, Takahashi S et al. Purkinje cell degeneration in mice lacking the xeroderma pigmentosum group G gene. J Neurosci Res 2001; 64:348–354.

    Article  PubMed  CAS  Google Scholar 

  31. Ng JM, Vrieling H, Sugasawa K et al. Developmental defects and male sterility in mice lacking the ubiquitin-like DNA repair gene mHR23B. Mol Cell Biol 2002; 22:1233–1245.

    Article  PubMed  CAS  Google Scholar 

  32. Matsumura YC, Nishigori T, Yagi S et al. Characterization of molecular defects in xeroderma pigmentosum group F in relation to its clinically mild symptoms. Hum Mol Genet 1998; 7:969–974.

    Article  PubMed  CAS  Google Scholar 

  33. Sijbers AM, de Laat WL, Ariza RR et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 1996; 86:811–822.

    Article  PubMed  CAS  Google Scholar 

  34. Sijbers AM, van Voorst Vader PC, Snoek JW et al. Homozygous R788W point mutation in the XPF gene of a patient with xeroderma pigmentosum and late-onset neurologic disease. J Investig Dermatol 1998; 110:832–836.

    Article  PubMed  CAS  Google Scholar 

  35. Sands AT, Abuin A, Sanchez A et al. High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC. Nature 1995; 377:162–165.

    Article  PubMed  CAS  Google Scholar 

  36. Egly JM. The 14th Datta Lecture. TFIIH: from transcription to clinic. FEBS Lett 2001; 498:124–128.

    Article  PubMed  CAS  Google Scholar 

  37. Wei Q, Cheng L, Amos CI et al. Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: a molecular epidemiologic study. J Natl Cancer Inst 2000; 92:1764–72.

    Article  PubMed  CAS  Google Scholar 

  38. Cleaver JE, Thompson LH, Richardson AS et al. A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Hum Mutat 1999; 14:9–22.

    Article  PubMed  CAS  Google Scholar 

  39. Lehmann AR. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 2003; 85:1101–1111.

    Article  PubMed  CAS  Google Scholar 

  40. De Boer J, Donker I, de Wit J et al. Disruption of the mouse xeroderma pigmentosum group D DNA repair/basal transcription gene results in pre-implantation lethality. Cancer Res 1998; 58:89–94.

    PubMed  Google Scholar 

  41. De Boer J, de Wit J, van Steeg H et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol Cell 1998; 1:981–990.

    Article  PubMed  Google Scholar 

  42. De Boer J, van Steeg H, Berg RJW et al. Mouse model for the DNA repair/basal transcription disorder trichothiodystrophy reveals cancer predisposition. Cancer Res 1999; 59:3489–3494.

    PubMed  Google Scholar 

  43. Van der Horst GTJ, Meira L, Gorgels TGMF et al. UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice. DNA Repair 2002; 1:143–157.

    Article  PubMed  Google Scholar 

  44. Van der Horst GTJ, van Steeg H, Berg RJW et al. Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell 1997; 89:425–435.

    Article  PubMed  Google Scholar 

  45. de Vries A, van Oostrom CT, Hofhuis FM et al. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 1995; 377:169–173.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Sun, XZ. et al. (2008). Animal Models of Xeroderma Pigmentosum. In: Ahmad, S.I., Hanaoka, F. (eds) Molecular Mechanisms of Xeroderma Pigmentosum. Advances in Experimental Medicine and Biology, vol 637. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09599-8_17

Download citation

Publish with us

Policies and ethics