Echinostomes and snails: exploring complex interactions.

  • Christine Coustau*
  • Benjamin Gourbal
  • Guillaume Mitta
  • Coen Adema


Echinostomes rely on a molluskan host to achieve the asexual multiplication phase of larval stages in their complex life cycle. Here we present prominent characteristics of the Biomphalaria-Echinostoma systems and detail recent advances in our understanding of their molecular interactions. Remarkably, studies using these echinostomes, pathogens with relatively modest medical impact have shed light on important aspects of parasite strategies for immune evasion, invertebrate internal defenses, and general immunology.


Immune Evasion Snail Species Snail Host Snail Intermediate Host Digenean Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



CMA was supported by NIH grants R01 AI024340, AI052363, and RR-1P20RR18754 from the Institute Development Award (IDeA) Program from the National Center for Research Resources.


  1. Abu-Shakra, M., Buskila, D., and Shoenfeld, Y. 1999. Molecular mimicry between host and pathogen: examples from parasites and implication. Immunology Letters 67: 147–152.PubMedCrossRefGoogle Scholar
  2. Adema, C.M., and Loker, E.S. 1997. Specificity and immunobiology of larval digenean-snail associations. In Fried and B. Graczyk, T. K. Trematode biology, CRC Press.Boca Raton: pp 229–263.Google Scholar
  3. Adema, C.M., Arguello, D.F., Striker, S.A., and Loker, E.S. 1994a. A time-lapse study of interactions between Echinostoma paraensei. intramolluscan larval stages and adherent hemocytes from Biomphalaria glabrata and Helix aspersa Journal of Parasitology 80: 719–727.CrossRefGoogle Scholar
  4. Adema, C.M., Van Deutekom-Mulder, E.C., Van der Knaap, P.W., and Sminia, T. 1994b. Schistosomicidal activities of Lymnaea stagnalis. hemocytes: the role of oxygen radicals Parasitology 109: 479–485.CrossRefGoogle Scholar
  5. Adema, C.M., Hertel, L.A., and Loker, E.S. 1997. Infection with Echinostoma paraensei. In (Digenea) induces parasite-reactive polypeptides in the hemolymph of the gastropod host Biomphalaria glabrataBeckage, N. parasite effects on host physiology and behavior, Chapman Press.New York: pp. 77–99.Google Scholar
  6. Adema, C.M., Hertel, L.A., Miller, R.D., and Loker, E.S. 1997. A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proceedings of the National Academy of Sciences of the United States of America 94: 8691–8696.PubMedCrossRefGoogle Scholar
  7. Adema, C.M., Hertel, L.A., and Loker, E.S. 1999. Evidence from two planorbid snails of a complex and dedicated response to digenean (echinostome) infection. Parasitology 119: 395–404.PubMedCrossRefGoogle Scholar
  8. Adema, C.M., Mei-Zhong, L., Hanelt, B., Hertel, L.A., Marshall, J.J., Zhang, S.-M., DeJong, R.J., Kim, H.R., Kudrna, D., Wing, R.A., Soderlund, C., Knight, M., Lewis, F.A., Caldeira, R.L., Jannotti-Passos, L.K., dos Santos Carvalho, O., and Loker, E.S. 2006. A bacterial artificial chromosome library for Biomphalaria glabrata., intermediate snail host of Schistosoma mansoni Memórias do Instituto Oswaldo Cruz 101: S167–S177.CrossRefGoogle Scholar
  9. Ataev, G., and Coustau, C. 1999. Cellular response to Echinostoma caproni. infection in Biomphalaria glabrata strains selected for susceptibility/resistance Developmental and Comparative Immunology 23: 187–198.PubMedCrossRefGoogle Scholar
  10. Ataev, G., Fournier, A., and Coustau, C. 1998. Comparison of Echinostoma caproni. mother sporocyst development in vivo and in vitro using Biomphalaria glabrata and B. glabrata embryonic cell line Journal of Parasitology 84: 227–235.PubMedCrossRefGoogle Scholar
  11. Bayne, C.J., Hahn, U.K., and Bender, R.C. 2001. Mechanisms of molluscan host resistance and of parasite strategies for survival. Parasitology 123: S159–S167.PubMedCrossRefGoogle Scholar
  12. Bender, R.C., Broderick, E.J., Goodall, C.P., and Bayne, C.J. 2005. Respiratory burst of Biomphalaria glabrata. hemocytes: Schistosoma mansoni-resistant snails produce more extracellular H2O2 than susceptible snails Journal of Parasitology 91: 275–279.PubMedCrossRefGoogle Scholar
  13. Bender, R.C., Goodall, C.P., Blouin, M.S., and Bayne, C.J. 2007. Variation in expression of Biomphalaria glabrata. SOD1: a potential controlling factor in susceptibility/resistance to Schistosoma mansoni Developmental and Comparative Immunology 31: 874–878.PubMedCrossRefGoogle Scholar
  14. Bergmann, S., Rohde, M., and Hammerschmidt, S. 2004. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae. is a surface-displayed plasminogen-binding protein Infection and Immunity 72: 2416–2419.PubMedCrossRefGoogle Scholar
  15. Bernal, D., de la Rubia, J.E., Carrasco-Abad, A.M., Toledo, R., Mas-Coma, S., and Marcilla, A. 2004. Identification of enolase as a plasminogen-binding protein in excretory-secretory products of Fasciola hepatica. FEBS Letters 563: 203–206.PubMedCrossRefGoogle Scholar
  16. Bernal, D., Carpena, I., Espert, A.M., De la Rubia, J.E., Esteban, J.G., Toledo, R., and Marcilla, A. 2006. Identification of proteins in excretory/secretory extracts of Echinostoma. friedi (Trematoda) from chronic and acute infections Proteomics 6: 2835–2843.PubMedCrossRefGoogle Scholar
  17. Bixler, L.M., Lerner, J.P., Ivanchenko, M., McCormick, R.S., Barnes, D.W., and Bayne, C.J. 2001. Axenic culture of Schistosoma mansoni. sporocysts in low 02 environments Journal of Parasitology 87: 1167–1168.PubMedCrossRefGoogle Scholar
  18. Bouchut, A., Roger, E., Coustau, C., Gourbal, B., and Mitta, G. 2006a. Compatibility in the Biomphalaria glabrata./Echinostoma caproni model: potential involvement of adhesion genes International Journal for Parasitology 36: 175–184.CrossRefGoogle Scholar
  19. Bouchut, A., Sautiere, P.E., Coustau, C., and Mitta, G. 2006b. Compatibility in the Biomphalaria glabrata/Echinostoma caproni. model: potential involvement of proteins from hemocytes revealed by a proteomic approach Acta Tropica 98: 234–246.CrossRefGoogle Scholar
  20. Bouchut, A., Coustau, C., Gourbal, B., and Mitta, G. 2007. Compatibility in the Biomphalaria glabrata/Echinostoma caproni. model: new candidate genes evidenced by a suppressive subtractive hybridization approach Parasitology. 134: 575–588PubMedCrossRefGoogle Scholar
  21. Boyunaga, H., Schmitz, M.G., Brouwers, J.F., Van Hellemond, J.J., and Tielens, A.G. 2001. Fasciola hepatica miracidia are dependent on respiration and endogenous glycogen degradation for their energy generation Parasitology 122: 169–173.PubMedCrossRefGoogle Scholar
  22. Cheng, T.C. 1968. The compatibility and incompatibility concept as related to trematodes and molluscs. Pacific Science 12: 141–160.Google Scholar
  23. Cordeiro, A.T., Michels, P.A., Delboni, L.F., and Thiemann, O.H. 2004. The crystal structure of glucose-6-phosphate isomerase from Leishmania mexicana. reveals novel active site features European Journal of Biochemistry 271: 2765–2772.PubMedCrossRefGoogle Scholar
  24. Coustau, C., and Yoshino, T.P. 2000. Flukes without snails: advances in the in vitro cultivation of intramolluscan stages of trematodes. Experimental Parasitology 94: 62–66.PubMedCrossRefGoogle Scholar
  25. Coustau, C., Ataev, G., Jourdane, J., and Yoshino, T.P. 1997. Schistosoma japonicum: in vitro cultivation of miracidium to daughter sporocysts using a Biomphalaria embryonic cell line Experimental Parasitology 8: 77–87.CrossRefGoogle Scholar
  26. Coustau, C., Mitta, G., Dissous, C., Guillou, F., Galinier, R., Alliene, J.F., and Modat, S. 2003. Schistosoma mansoni and Echinostoma caproni differentially affect gene expression in Biomphalaria glabrata embryonic cells Parasitolog 127: 533–542.CrossRefGoogle Scholar
  27. Damian, R.T. 1997. Parasite immune evasion and exploitation: reflections and projections. Parasitology 115: S169–S175.PubMedCrossRefGoogle Scholar
  28. Davids, B.J., Wu, X.J., and Yoshino, T.P. 1999. Cloning of a beta integrin subunit cDNA from an embryonic cell line derived from the freshwater mollusc, Biomphalaria glabrata. Gene 228: 213–223.PubMedCrossRefGoogle Scholar
  29. DeGaffe, G., and Loker, E.S. 1998. Susceptibility of Biomphalaria glabrata. to infection with Echinostoma paraensei: correlation with the effect of parasite secretory-excretory products on host hemocyte spreading Journal of Invertebrate Pathology 71: 64–72.PubMedCrossRefGoogle Scholar
  30. Dikkeboom, R., Bayne, C.J., Van der Knaap, W.P., and Tijnagel, J.M. 1988. Possible role of reactive forms of oxygen in in vitro killing of Schistosoma mansoni. sporocysts by hemocytes of Lymnaea stagnalis Parasitology Research 75: 148–154.PubMedCrossRefGoogle Scholar
  31. Dondero, T.J. Jr., Ow-Yang, C.K., and Lie, K.J. 1977. Failure of irradiated Echinostoma audyi. and Hypoderaeum dingeri to sensitize Lymnaea rubiginosa snails Southeast Asian Journal of Tropical Medicine and Public Health 8: 359–363.PubMedGoogle Scholar
  32. Duclermortier, P., Lardans, V., Serra, E., Trottein, F., and Dissous, C. 1999. Biomphalaria glabrata embryonic cells express a protein with a domain homologous to the lectin domain of mammalian selectins Parasitology Research 85: 481–486.PubMedCrossRefGoogle Scholar
  33. Fenwick, A., Rollinson, D., and Southgate, V. 2006. Implementation of human schistosomiasis control: challenges and prospects. Advances in Parasitology 61: 567–622.PubMedCrossRefGoogle Scholar
  34. Fryer, S.E., and Bayne, C.J. 1989. Opsonisation of yeast by the plasma of Biomphalaria glabrata. (gastropoda): a strain-specific, time-dependent process Parasite Immunology 11: 269–278.PubMedCrossRefGoogle Scholar
  35. Fryer, S.E., and Bayne, C.J. 1996. Phagocytosis of latex beads by Biomphalaria glabrata. hemocytes is modulated in a strain-specific manner by adsorbed plasma components Developmental and Comparative Immunology 20: 23–37.PubMedCrossRefGoogle Scholar
  36. Goodall, C.P., Bender, R.C., Brooks, J.K., and Bayne, C.J. 2006. Biomphalaria glabrata cytosolic copper/zinc superoxide dismutase (SOD1) gene: association of SOD1 alleles with resistance/susceptibility to Schistosoma mansoni Molecular and Biochemical Parasitology 147: 207–210.PubMedCrossRefGoogle Scholar
  37. Granath, W.O., and Yoshino, T.P. 1984. Schistosoma mansoni: passive transfer of resistance by serum in the vector snail, Biomphalaria glabrata Experimental Parasitology 58: 188–193.PubMedCrossRefGoogle Scholar
  38. Guillou, F., Mitta, G., Galinier, R., and Coustau, C. 2007a. Identification and expression of transcripts generated during an anti-parasitic response in Biomphalaria glabrata. Developmental and Comparative Immunology 31: 657–671.CrossRefGoogle Scholar
  39. Guillou, F., Roger, E., Moné, Y., Rognon, A., Grunau, C., Thèron, A., Mitta, G., Coustau, C., and Gourbal, B. 2007b. Excretory-secretory proteome of larval Schistosoma mansoni. and Echinostoma caproni, two parasites of Biomphalaria glabrata Molecular and Biochemical Parasitology 155: 45–56.CrossRefGoogle Scholar
  40. Haas, W., Körner, M., Hutterer, E., Wegner, M., and Haberl, B. 1995. Finding and recognition of the snail intermediate hosts by 3 species of echinostome cercariae. Parasitology 110: 133–142.PubMedCrossRefGoogle Scholar
  41. Haberl, B., Körner, M., Spengler, Y., Hertel, J., Kalbe, M., and Haas, W. 2000. Host-finding in Echinostoma caproni.: miracidia and cercariae use different signals to identify the same snail species Parasitology 120: 479–486.PubMedCrossRefGoogle Scholar
  42. Hahn, U.K., Bender, R.C., and Bayne, C.J. 2001. Involvement of nitric oxide in killing of Schistosoma mansoni. sporocysts by hemocytes from resistant Biomphalaria glabrata Journal of Parasitology 87: 778–785.PubMedCrossRefGoogle Scholar
  43. Hansen, E.L. 1976. A cell line from embryos of Biomphalaria glabrata. In (Pulmonata): establishment and characteristicsKurstak and E. Maramorosch, K. Invertebrate tissue culture, Academic.New York: pp. 75–99.Google Scholar
  44. Hertel, L.A., Stricker, S.A., Monroy, F.P., Wilson, W.D., and Loker, E.S. 1994. Biomphalaria glabrata hemolymph lectins: binding to bacteria, mammalian erythrocytes, and to sporocysts and rediae of Echinostoma paraensei Journal of Invertebrate Pathology 64: 52–61.PubMedCrossRefGoogle Scholar
  45. Hertel, L.A., Stricker, S.A., and Loker, E.S. 2000. Calcium dynamics of hemocytes of the gastropod Biomphalaria glabrata.: effects of digenetic trematodes and selected bioactive compounds Invertebrate Biology 119: 27–37.Google Scholar
  46. Hertel, L.A., Adema, C.M., and Loker, E.S. 2005. Differential expression of FREP genes in two strains of Biomphalaria glabrata. following exposure to the digenetic trematodes Schistosoma mansoni and Echinostoma paraensei Developmental and Comparative Immunology 29: 295–303.PubMedCrossRefGoogle Scholar
  47. Humbert, E., and Coustau, C. 2001. Refractoriness of host hemocytes. to parasite immunosuppressive factors as a putative resistance mechanism in the Biomphalaria glabrata - Echinostoma caproni system Parasitology 122: 651–660.PubMedCrossRefGoogle Scholar
  48. Humphries, J.E., and Yoshino, T.P. 2008. Regulation of hydrogen peroxide release in circulating hemocytes of the planorbid snail Biomphalaria glabrata. Developmental and Comparative Immunology 32: 554–562.PubMedCrossRefGoogle Scholar
  49. Humphries, J.E., Elizondo, L., and Yoshino, T.P. 2001. Protein kinase C regulation of cell spreading in the molluscan Biomphalaria glabrata. embryonic (Bge) cell line Biochemica et Biophysica Acta 1540: 243–252.Google Scholar
  50. Ivanchenko, M.G., Lerner, R.S., Toumadje, B., Allen, B., Fisher, K., Barnes, D.W., and Bayne, C.J. 1999. Continuous in vitro propagation and differentiation of cultures of the intra-molluscan stages of the human parasite Schistosoma mansoni. Proceedings of the National Academy of Sciences of the United States of America 96: 4965–4970.PubMedCrossRefGoogle Scholar
  51. Jeong, K.H., Lie, K.J., and Heyneman, D. 1980. Leucocytosis in Biomphalaria glabrata. sensitized and resensitized to Echinostoma lindoense Journal of Invertebrate Pathology 35: 9–13.PubMedCrossRefGoogle Scholar
  52. Jeong, K.H., Sussman, S., Rosen, S.D., Lie, K.J., and Heyneman, D. 1981. Distribution and variation of hemagglutinating activity in the hemolymph of Biomphalaria glabrata. Journal of Invertebrate Pathology 38: 256–263.PubMedCrossRefGoogle Scholar
  53. Jolodar, A., Fischer, P., Bergmann, S., Büttner, D.W., Hammerschmidt, S., and Brattig, N.W. 2003. Molecular cloning of an alpha-enolase from the human filarial parasite Onchocerca volvulus. that binds human plasminogen Biochemica et Biophysica Acta 1627: 111–120.Google Scholar
  54. Jung, Y., Nowak, T.S., Zhang, S.-M., Hertel, L.A., Loker, E.S., and Adema, C.M. 2005. Manganese superoxide dismutase from Biomphalaria glabrata. Journal of Invertebrate Pathology 90: 59–63.PubMedCrossRefGoogle Scholar
  55. Kanev, V., Radev, V., Sterner, M., and Fried, B. 2000. An overview of the biology of echinostomes. In Fried and B. Graczyk, T. K. Echinostomes as experimental models for biological research, Dordrecht: Kluwerpp. 1–29.Google Scholar
  56. Kayath, N., Mithieux, G., Zitoun, C., Coustau, C., Vicogne, J., Tielens, A.G., and Dissous, C. 2006. Glyceroneogenesis: an unexpected metabolic pathway for glutamine in Schistosoma mansoni. sporocysts Molecular and Biochemical Parasitology 147: 145–153.CrossRefGoogle Scholar
  57. King, C.H., Sturrock, R.F., Kariuki, H.C., and Hamburger, J. 2006. Transmission control for schistosomiasis - why it matters now. Trends in Parasitology 22: 575–582.PubMedCrossRefGoogle Scholar
  58. Klein, J. 1989. Are invertebrates capable of anticipatory immune responses? Scandinavian Journal of Immunology 29: 499–505.PubMedCrossRefGoogle Scholar
  59. Knudsen, G.M., Medzihradszky, K.F., Lim, K.C., Hansell, E., and McKerrow, J.H. 2005. Proteomic analysis of Schistosoma mansoni. cercarial secretions Molecular and Cell Proteomics 4: 1862–1875.CrossRefGoogle Scholar
  60. Kolberg, J., Aase, A., Bergmann, S., Herstad, T.K., Rødal, G., Frank, R., Rohde, M., and Hammerschmidt, S. 2006. Streptococcus pneumoniae enolase is important for plasminogen binding despite low abundance of enolase protein on the bacterial cell surface Microbiology 152: 1307–1317.PubMedCrossRefGoogle Scholar
  61. Kum-Tatt, L., Tan, I.K., and Seet, A.M. 1975. A new colorimetric method for the determination of NADH/NADPH dependent glutathione reductase in erythrocytes and in plasma. Clinica Chimica Acta 58: 101–108.CrossRefGoogle Scholar
  62. Kurtz, J. 2005. Specific memory within innate immune systems. Trends in Immunology 26: 186–192.PubMedCrossRefGoogle Scholar
  63. Langand, J., and Morand, S. 1998. Heritable non-susceptibility in an allopatric host-parasite system: Biomphalaria glabrata. (Mollusca)-Echinostoma caproni (Plathelminth Digenea) Journal of Parasitology 84: 739–742.PubMedCrossRefGoogle Scholar
  64. Lardans, V., and Dissous, C. 1998. Snail control strategies for reduction of schistosomiasis transmission. Parasitology Today 14: 413–417.PubMedCrossRefGoogle Scholar
  65. Laursen, J.R., di Liu, H., Wu, X.J., and Yoshino, T.P. 1997. Heat-shock response in a molluscan cell line: characterization of the response and cloning of an inducible HSP70 cDNA. Journal of Invertebrate Pathology 70: 226–233.PubMedCrossRefGoogle Scholar
  66. Léonard, P.M., Adema, C.M., Zhang, S.-M., and Loker, E.S. 2001. Structure of two FREP genes that encode IgSF and fibrinogen domains, with comments on diversity of the FREP gene family in the snail Biomphalaria glabrata. Gene 269: 155–165.PubMedCrossRefGoogle Scholar
  67. Lie, K.J. 1982. Survival of Schistosoma mansoni. and other trematode larvae in the snail Biomphalaria glabrata. A discussion of the interference hypothesis Tropical and Geographical Medicine 34: 111–122.PubMedGoogle Scholar
  68. Lie, K.J., and Heyneman, D. 1976. Studies on resistance in snails. 3. Tissue reactions to Echinostoma lindoense. sporocysts in sensitized and resensitized Biomphalaria glabrata Journal of Parasitology 62: 51–58.PubMedCrossRefGoogle Scholar
  69. Lie, K.J., and Heyneman, D. 1977a. Studies on resistance in snails: interference by nonirradiated echinostome larvae with natural resistance to Schistosoma mansoni. in Biomphalaria glabrata Journal of Invertebrate Pathology 29: 118–125.CrossRefGoogle Scholar
  70. Lie, K.J., and Heyneman, D. 1977b. Schistosoma mansoni, Echinostoma lindoense, and Paryphostomum segregatum: interference by trematode larvae with acquired resistance in snails, Biomphalaria glabrata Experimental Parasitology 42: 343–347.CrossRefGoogle Scholar
  71. Lie, K.J., and Heyneman, D. 1979. Acquired resistance to echinostomes in four Biomphalaria glabrata. strains International Journal for Parasitology 9: 533–537.PubMedCrossRefGoogle Scholar
  72. Lie, K.J., Heyneman, D., and Lim, H.K. 1975. Studies on resistance in snails: specific resistance induced by irradiated miracidia of Echinostoma lindoense. in Biomphalaria glabrata snails International Journal for Parasitology 5: 627–631PubMedCrossRefGoogle Scholar
  73. Lie, K.J., Heyneman, D., and Jeong, K.H. 1976. Studies on resistance in snails. 7. Evidence of interference with the defense reaction in Biomphalaria glabrata. by trematode larvae Journal of Parasitology 62: 608–615.PubMedCrossRefGoogle Scholar
  74. Lie, K.J., Jeong, K.H., and Heyneman, D. 1982. Further characterization of acquired resistance in Biomphalaria glabrata. Journal of Parasitology 68: 529–531.PubMedCrossRefGoogle Scholar
  75. Litman, G.W., Cannon, J.P., and Rast, J.P. 2005a. New insights into alternative mechanisms of immune receptor diversification. Advances in Immunology 87: 209–236.CrossRefGoogle Scholar
  76. Litman, G.W., Cannon, J.P., and Dishaw, L.J. 2005b. Reconstructing immune phylogeny: new perspectives. Nature Reviews Immunology 5: 866–879.CrossRefGoogle Scholar
  77. Little, T.J., Hultmark, D., and Read, A.F. 2005. Invertebrate immunity and the limits of mechanistic immunology. Nature Immunology 6: 651–654.PubMedCrossRefGoogle Scholar
  78. Lockyer, A.E., Jones, C.S., Noble, L.R., and Rollinson, D. 2000. Use of differential display to detect changes in gene expression in the intermediate snail host Biomphalaria glabrata. upon infection with Schistosoma mansoni Parasitology 120: 399–407.PubMedCrossRefGoogle Scholar
  79. Lockyer, A.E., Noble, L.R., and Rollinson, D.S. 2004. Schistosoma mansoni: resistant specific infection-induced gene expression in Biomphalaria glabrata identified by fluorescent-based differential display Experimental Parasitology 107: 97–104.PubMedCrossRefGoogle Scholar
  80. Lockyer, A.E., Spinks, J.N., Walker, A.J., Kane, R.A., Noble, L.R., Rollinson, D., Dias-Neto, E., and Jones, C.S. 2007a. Biomphalaria glabrata transcriptome: identification of cell-signalling, transcriptional control and immune-related genes from open reading frame expressed sequence tags (ORESTES) Developmental and Comparative Immunology 31: 763–782.CrossRefGoogle Scholar
  81. Lockyer, A.E., Spinks, J., Noble, L.R., Rollinson, D., and Jones, C.S. 2007b. Identification of genes involved in interactions between Biomphalaria glabrata. and Schistosoma mansoni by suppression subtractive hybridization Molecular and Biochemical Parasitology 151: 18–27.CrossRefGoogle Scholar
  82. Lo, C.T. 1995. Echinostoma macrorchis: life history, population dynamics of intramolluscan stages, and the first and second intermediate hosts Journal of Parasitology 8: 569–576.Google Scholar
  83. Loker, E.S. 1994. On being a parasite in an invertebrate host: a short survival course. The Journal of Parasitology 80: 728–747.PubMedCrossRefGoogle Scholar
  84. Loker, E.S., and Adema, C.M. 1995. Schistosomes, echinostomes and snails: comparative immunobiology. Parasitology Today 11: 120–124.CrossRefGoogle Scholar
  85. Loker, E.S., and Bayne, C.J. 1986. Immunity to trematode larvae in the snail Biomphalaria. Zoological Symposium 56: 199–220.Google Scholar
  86. Loker, E.S., and Hertel, L.A. 1987. Alterations in Biomphalaria glabrata. plasma induced by infection with the digenetic trematode Echinostoma paraensei Journal of Parasitology 73: 503–513.PubMedCrossRefGoogle Scholar
  87. Loker, E.S., Bayne, C.J., and Hui, M.A. 1986. Echinostoma paraensei: hemocytes of Biomphalaria glabrata as targets of echinostome mediated interference with host snail resistance to Schistosoma mansoni Experimental Parasitology 62: 149–154.PubMedCrossRefGoogle Scholar
  88. Loker, E.S., Boston, M.E., and Bayne, C.J. 1989. Differential adherence of M-line Biomphalaria glabrata. hemocytes to Schistosoma mansoni and Echinostoma paraensei larvae, and experimental manipulation of hemocyte binding Journal of Invertebrate Pathology 54: 260–268.PubMedCrossRefGoogle Scholar
  89. Loker, E.S., Adema, C.M., Zhang, S.-M., and Kepler, T.B. 2004. Invertebrate immune systems: not homogeneous, not simple, not well understood. Immunological Reviews 198: 10–24.PubMedCrossRefGoogle Scholar
  90. LoVerde, P.T. 1998. Do antioxidants play a role in schistosome host-parasite interactions? Parasitology Today 14: 284–289.PubMedCrossRefGoogle Scholar
  91. Maizels, R.M., Balic, A., Gomez-Escobar, N., Nair, M., Taylor, M.D., and Allen, J.E. 2004. Helminth parasites-masters of regulation. Immunology Reviews 201: 89–116.CrossRefGoogle Scholar
  92. Medzhitov, R., and Janeway, C. Jr. 2000. Innate immune recognition: mechanisms and pathways. Immunological Reviews 173: 89–97.PubMedCrossRefGoogle Scholar
  93. Mei, H., and LoVerde, P.T. 1997. Schistosoma mansoni: the developmental regulation and immunolocalization of antioxidant enzymes Experimental Parasitology 86: 69–78.PubMedCrossRefGoogle Scholar
  94. Miller, A.N., Raghavan, N., FitzGerald, P.C., Lewis, F.A., and Knight, M. 2001. Differential gene expression in haemocytes of the snail Biomphalaria glabrata.: effects of Schistosoma mansoni infection International Journal for Parasitology 31: 687–696.PubMedCrossRefGoogle Scholar
  95. Mitta, G., Galinier, R., Tisseyre, P., Girerd-Chambaz, Y., Guillou, F., Bouchut, A., and Coustau, C. 2005. Gene discovery and expression analysis of immune-relevant genes from Biomphalaria glabrata. hemocytes Developmental and Comparative Immunology 29: 393–407.PubMedCrossRefGoogle Scholar
  96. Mkoji, G.M., Smith, J.M., and Prichard, R.K. 1988a. Antioxidant systems in Schistosoma mansoni.: correlation between susceptibility to oxidant killing and the levels of scavengers of hydrogen peroxide and oxygen free radicals International Journal for Parasitology 18: 661–666.CrossRefGoogle Scholar
  97. Mkoji, G.M., Smith, J.M., and Prichard, R.K. 1988b. Antioxidant systems in Schistosoma mansoni.: evidence for their role in protection of the adult worms against oxidant killing International Journal for Parasitology 18: 667–673.CrossRefGoogle Scholar
  98. Monroy, F., Hertel, L.A., and Loker, E.S. 1992. Carbohydrate-binding plasma proteins from the gastropod Biomphalaria glabrata.: strain specificity and the effects of trematode infection Developmental and Comparative Immunology 16: 355–366.PubMedCrossRefGoogle Scholar
  99. Monroy, F.P., and Loker, E.S. 1993. Production of heterogeneous carbohydrate-binding proteins by the host snail Biomphalaria glabrata. following exposure to Echinostoma paraensei and Schistosoma mansoni Journal of Parasitology 79: 416–423.PubMedGoogle Scholar
  100. Noda, S. 1992. Effects of excretory-secretory products of Echinostoma paraensei. larvae on the hematopoietic organ of M-line Biomphalaria glabrata snails Journal of Parasitology 78: 512–517.PubMedCrossRefGoogle Scholar
  101. Noda, S., and Loker, E.S. 1989a. Effect of infection with Echinostoma paraensei. on the circulating hemocyte population of the host snail Biomphalaria glabrata Parasitology 98: 35–41.CrossRefGoogle Scholar
  102. Noda, S., and Loker, E.S. 1989b. Phagocytic activity of hemocytes of M-line Biomphalaria glabrata. snails: effect of exposure to the trematode Echinostoma paraensei Journal of Parasitology 75: 261–269.CrossRefGoogle Scholar
  103. Nowak, T.S., and Loker, E.S. 2005. Echinostoma paraensei: differential gene transcription in the sporocyst stage Experimental Parasitology 109: 94–105.PubMedCrossRefGoogle Scholar
  104. Nowak, T.S., Woodards, A.C., Jung, Y., Adema, C.M., and Loker, E.S. 2004. Identification of transcripts generated during the response of resistant Biomphalaria glabrata. to Schistosoma mansoni infection using suppression subtractive hybridization Journal of Parasitology 90: 1034–1340.PubMedCrossRefGoogle Scholar
  105. Perez-Sanchez, R., Ramajo-Hernandez, A., Ramajo-Martín, V., and Oleaga, A. 2006. Proteomic analysis of the tegument and excretory-secretory products of adult Schistosoma bovis. worms Proteomics 6: S226–S236.PubMedCrossRefGoogle Scholar
  106. Pham, L.N., Dionne, M.S., Shirasu-Hiza, M., and Schneider, D.S. 2007. A specific primed immune response in Drosophila. is dependent on phagocytes PLoS Pathogens 3: 26.CrossRefGoogle Scholar
  107. Raghavan, N., Miller, A.N., Gardner, M., FitzGerald, P.C., Kerlavage, A.R., Johnston, D.A., Lewis, F.A., and Knight, M. 2003. Comparative gene analysis of Biomphalaria glabrata. hemocytes pre- and post-exposure to miracidia of Schistosoma mansoni Molecular and Biochemical Parasitology 126: 181–191.PubMedCrossRefGoogle Scholar
  108. Roth, E. 1990. Plasmodium falciparum carbohydrate metabolism: a connection between host cell and parasite Blood Cells 16: 453–460.PubMedGoogle Scholar
  109. Sapp, K.K., and Loker, E.S. 2000a. Mechanisms underlying digenean-snail specificity: role of miracidial attachment and host plasma factors. Journal of Parasitology 86: 1012–1019.CrossRefGoogle Scholar
  110. Sapp, K.K., and Loker, E.S. 2000b. A comparative study of mechanisms underlying digenean-snail specificity: in vitro interactions between hemocytes and digenean larvae. Journal of Parasitology 86: 1020–1029.CrossRefGoogle Scholar
  111. Sapp, K.K., Meyer, K.A., and Loker, E.S. 1998. Intramolluscan development of the digenean Echinostoma paraensei.: rapid production of a unique mother redia that adversely affects development of conspecific parasites Invertebrate Biology 117: 20–28.CrossRefGoogle Scholar
  112. Schneider, O., and Zelck, U.E. 2001. Differential display analysis of hemocytes from schistosome-resistant and schistosome-susceptible intermediate hosts. Parasitology Research 87: 489–491.PubMedCrossRefGoogle Scholar
  113. Tielens, A.G., Van de Pas, F.A., Van den Heuvel, J.M., and Van den Bergh, S.G. 1991. The aerobic energy metabolism of Schistosoma mansoni. miracidia Molecular and Biochemical Parasitology 46: 181–184.PubMedCrossRefGoogle Scholar
  114. Tielens, A.G., Horemans, A.M., Dunnewijk, R., Van der Meer, P., and Van den Bergh, S.G. 1992. The facultative anaerobic energy metabolism of Schistosoma mansoni. sporocysts Molecular and Biochemical Parasitology 56: 49–57.PubMedCrossRefGoogle Scholar
  115. Van der Knaap, W.P., and Loker, E.S. 1990. Immune mechanisms in trematode-snail interactions. Parasitology Today 6: 175–182.PubMedCrossRefGoogle Scholar
  116. Vasta, G.R., Ahmed, H., and Odom, E.W. 2004. Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates. Current Opinion in Structural Biology 14: 617–630.PubMedCrossRefGoogle Scholar
  117. Vergote, D., Bouchut, A., Sautière, P.E., Roger, E., Galinier, R., Rognon, A., Coustau, C., Salzet, M., and Mitta, G. 2005. Characterisation of proteins differentially present in the plasma of Biomphalaria glabrata. susceptible or resistant to Echinostoma caproni International Journal for Parasitology 35: 215–224.PubMedCrossRefGoogle Scholar
  118. Walker, A.J. 2006. Do trematode parasites disrupt defence-cell signalling in their snail hosts?. Trends in Parasitology 22: 154–159.PubMedCrossRefGoogle Scholar
  119. Würzner, R. 1999. Evasion of pathogens by avoiding recognition or eradication by complement, in part via molecular mimicry. Molecular Immunology 36: 249–260.PubMedCrossRefGoogle Scholar
  120. Yoshino, T.P., and Granath, W.O. Jr. 1985. Surface antigens of Biomphalaria glabrata. (Gastropoda) hemocytes: functional heterogeneity in cell subpopulations recognized by a monoclonal antibody Journal of Invertebrate Pathology 45: 174–186.PubMedCrossRefGoogle Scholar
  121. Yoshino, T.P., and Laursen, J.R. 1995. Production of Schistosoma mansoni. daughter sporocysts from mother sporocysts maintained in synxenic cultures with Biomphalaria glabrata embryonic (Bge) cells Journal of Parasitology 81: 714–722.PubMedCrossRefGoogle Scholar
  122. Yoshino, T.P., and Vasta, G.R. 1996. Parasite-invertebrate host immune interaction. In Advances in comparative and environmental physiology, Vol. 24, Springer.Berlin : pp. 125–167Google Scholar
  123. Yoshino , T.P., Dinguirard, N., Kunert, J., and Hokke, C.H. in press. Molecular and functional characterization of a tandem-repeat galectin from the freshwater snail Biomphalaria glabrata, intermediate host of the human blood fluke Schistosoma mansoni. Gene.Google Scholar
  124. Zambrano-Villa, S., Rosales-Borjas, D., Carrero, J.C., and Ortiz-Ortiz, L. 2002. How protozoan parasites evade the immune response. Trends in Parasitology 18: 272–278.PubMedCrossRefGoogle Scholar
  125. Zhang, G., Schmidt, O., and Asgari, S. 2006. A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. Developmental and Comparative Immunology 30: 756–764.PubMedCrossRefGoogle Scholar
  126. Zhang, S.-M., and Loker, E.S. 2003. The FREP gene family in the snail Biomphalaria glabrata.: additional members, and evidence consistent with alternative splicing and FREP retrosequences. Fibrinogen-related proteins Developmental and Comparative Immunology 27: 175–187.PubMedCrossRefGoogle Scholar
  127. Zhang, S.-M., Léonard, P.M., Adema, C.M., and Loker, E.S. 2001. Parasite responsive IgSF members in the snail Biomphalaria glabrata: characterization of novel genes with tandemly arranged IgSF domains and a fibrinogen domain. Immunogenetics 53: 684–694.PubMedCrossRefGoogle Scholar
  128. Zhang, S.-M., Adema, C.M., Kepler, T.B., and Loker, E.S. 2004. Diversification of Ig superfamily genes in an invertebrate. Science 305: 251–254PubMedCrossRefGoogle Scholar
  129. Zhang, S.-M., Zeng, Y., and Loker, E.S. 2007. Characterization of immune genes from the schistosome host snail Biomphalaria glabrata. that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein Immunogenetics 59: 883–898.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christine Coustau*
    • 1
  • Benjamin Gourbal
    • 1
  • Guillaume Mitta
    • 1
  • Coen Adema
    • 1
  1. 1.U547 InsermInstitut Pasteur de LilleLilleFrance

Personalised recommendations