Skip to main content

Diet, Immunity and Functional Foods

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((volume 635))

Abstract

Functional foods (specific nutrient and/or food components) should beneficially affect one or more target functions in the body. The use of functional foods as a form of preventive medicine has been the subject of much research over the last two decades. It is well known that nutrition plays a vital role in chronic diseases, but it is only recently that data relating to the effects of specific nutrients or foods on the immune system have become available. This chapter aims to summarize the effects of some functional foods (e.g., prebiotics and micronutrients) on the immune system. It should be noted, however, that studies into the role of functional foods with regard to the human immune system are still in their infancy and a great deal of controversy surrounds the health claims attributed to some functional foods. Consequently, thorough studies are required in human and animal systems if we are to move towards developing a functional diet that provides maximal health benefits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberfroid MB. Defining functional foods. In: Gibson GR, Williams CM, eds. Functional Foods: Concept to Product. Boca Raton: CRC Press LLC, 2000:9–27.

    Google Scholar 

  2. Diplock AT, Agget PJ, Ashwell M et al. Scientific concepts of functional foods in Europe: consensus document. Br J Nutr 1999; 81(suppl):S1–S28.

    CAS  Google Scholar 

  3. Calder PC, Kew S. The immune system: a target for functional foods? Br J Nutr 2002; 88(suppl): S165–S176.

    Article  PubMed  CAS  Google Scholar 

  4. Calder PC, Field CJ, Gill HS, eds. Nutrition and Immune Function. Wallingford: CABI Publishing, 2002.

    Google Scholar 

  5. Johnson IT. New food components and gastrointestinal health. Proc Nutr Soc 2001; 60:481–485.

    Article  PubMed  CAS  Google Scholar 

  6. Mollet B, Rowland I. Functional foods: at the frontier between food and pharma. Editorial overview. Curr Opin Biotechnol 2002; 13:483–485.

    Article  PubMed  CAS  Google Scholar 

  7. Gibson GR, Roberfroid MB, eds. Colonic Microbiota, Nutrition and Health. Dordrecht: Kluwer Academic Publishers, 1999.

    Google Scholar 

  8. Fuller R. Probiotics: growth-promoting factors produced by microorganisms. Science 1989; 147: 747–748.

    Google Scholar 

  9. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125:1401–1412.

    PubMed  CAS  Google Scholar 

  10. Shortt C. Living it up for dinner. Chem Ind 1998; 8:300–303.

    Google Scholar 

  11. Metchnikoff, E. The Prolongation of Life: Optimistic Studies. New York: GP Putnam’s Sons, 1908.

    Google Scholar 

  12. Molis C, Florie B, Ouarne F et al. Digestion, excretion and energy value of fructooligosaccharides in healthy humans. Am J Clin Nutr 1996; 64:324–328.

    PubMed  CAS  Google Scholar 

  13. Gibson GR, Probert HM, Loo JV et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004; 17:259–275.

    Article  PubMed  CAS  Google Scholar 

  14. Morrow AL, Guerrero ML, Shults J et al. Efficacy of home-based peer counselling to promote exclusive breastfeeding: a randomised controlled trial. Lancet 1999; 353:1226–1231.

    Article  PubMed  CAS  Google Scholar 

  15. Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr 2005; 25:37–58.

    Article  PubMed  CAS  Google Scholar 

  16. Buddington KK, Donahoo JB, Buddington RK. Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J Nutr 2002; 132:472–477.

    PubMed  CAS  Google Scholar 

  17. Kelly-Quagliana KA, Nelson PD, Buddington RK. Dietary oligofructose and inulin modulate immune function in mice. Nutr Res 2003; 23:257–267.

    Article  CAS  Google Scholar 

  18. Pierre F, Perrin P, Champ M et al. Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in Min mice. Cancer Res 1997; 57:225–228.

    PubMed  CAS  Google Scholar 

  19. Pierre F, Perrin P, Bassonga E et al. T-cell status influences colon tumor occurrence in Min mice fed short-chain fructo-oligosaccharides as a diet supplement. Carcinogenesis 1999; 20:1953–1956.

    Article  PubMed  CAS  Google Scholar 

  20. Hosono A, Ozawa A, Kato R et al. Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer’s patch cells. Biosci Biotechnol Biochem 2003; 67:758–764.

    Article  PubMed  CAS  Google Scholar 

  21. Nakamura Y, Nosaka S, Suzuki M et al. Dietary fructooligosaccharides up-regulate immunoglobulin A response and polymeric immunoglobulin receptor expression in intestines of infant mice. Clin Exp Immunol 2004; 137:52–58.

    Article  PubMed  CAS  Google Scholar 

  22. Kudoh K, Shimizu J, Wada M et al. Effect of indigestible saccharides on B-lymphocyte response of intestinal mucosa and cecal fermentation in rats. J Nutr Sci Vit 1998; 44:103–112.

    CAS  Google Scholar 

  23. Nagendra R, Venkat Rao S. Effect of feeding infant formulations containing bifidus factors on in vivo proliferation of bifidobacteria and stimulation of intraperitoneal macrophage activity in rats. J Nutr Immunol 1994; 2:61–68.

    Article  Google Scholar 

  24. Manhart N, Spittler A, Bergmeister H et al. Influence of fructooligosaccharides on Peyer’s patch lymphocyte numbers in healthy and endotoxemic mice. Nutrition 2003; 19:657–660.

    Article  PubMed  CAS  Google Scholar 

  25. Guigoz Y, Rochat F, Perruisseau-Carrier G et al. Effects of oligosaccharide on the faccal flora and nonspecific immune system in elderly people. Nutr Res 2002; 22:13–25.

    Article  CAS  Google Scholar 

  26. Bunout D, Hirsch S, de la Maza MP et al. Effects of prebiotics on the immune response to vaccination in the elderly. J Parenter Enter Nutr 2002; 26:372–376.

    Article  Google Scholar 

  27. Sazawal S, Dhingra U, Sarkar A et al. Efficacy of milk fortified with a probiotic Bifidobacterium lactis (DR-10TM) and prebiotic galacto-oligosaccharides in prevention of morbidity and on nutritional status. Asia Pac J Clin Nutr 2004; 13:S28.

    Google Scholar 

  28. Gibson GR, Beatty ER, Wang X et al. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 1995; 108:975–982.

    Article  PubMed  CAS  Google Scholar 

  29. Bouhnik Y, Flourie B, D’Agay-bensour L et al. Administration of transgalactooligosaccharides increase fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J Nutr 1997; 127:444–448.

    PubMed  CAS  Google Scholar 

  30. Kleessen B, Hartmann L, Blaut M. Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faccal flora. Br J Nutr 2001; 86:291–300.

    Article  PubMed  CAS  Google Scholar 

  31. Vulevic J, Rastall RA, Gibson GR. Developing a quantitative approach for determining the in vitro prebiotic potential of dietary oligosaccharides. FEMS Microbiol Lett 2004; 236:153–159.

    Article  PubMed  CAS  Google Scholar 

  32. Takahashi T, Nakagawa E, Nara T et al. Effects of orally ingested Bifidobacterium longum on the mucosal IgA response of mice to dietary antigens. Biosci Biotechnol Biochem 1998; 62:10–15.

    Article  PubMed  CAS  Google Scholar 

  33. Tejada-Simon MV, Ustunol Z, Pestka JJ. Effects of lactic acid bacteria ingestion of basal cytokine mRNA and immunoglobulin levels in the mouse. J Food Prot 1999; 62:287–291.

    PubMed  CAS  Google Scholar 

  34. Qiao H, Duffy LC, Griffiths E et al. Immune responses in rhesus rotavirus-challenged Balb/c mice treated with bifidobacteria and prebiotic supplements. Pediatr Res 2002; 51:750–755.

    PubMed  Google Scholar 

  35. Moineau S, Goulet J. Effect of feeding fermented milks on the pulmonary macrophage activity in mice. Milchwissenschaft 1991; 46:551–554.

    Google Scholar 

  36. Matsuzaki T, Yamazaki R, Hashimoto S et al. The effect of oral feeding of Lactobacillus casei strain Shirota on immunoglobulin E production in mice. J Dairy Sci 1998; 81:48–53.

    Article  PubMed  CAS  Google Scholar 

  37. Tejada-Simon MV, Ustunol Z, Pestka JJ. Ex vivo effects of lactobacilli, streptococci and bifidobacteria ingestion on cytokine and nitric oxide production in a murine model. J Food Prot 1999; 62:162–169.

    PubMed  CAS  Google Scholar 

  38. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124: 783–801.

    Article  PubMed  CAS  Google Scholar 

  39. Vasselon T, Detmers PA. Toll receptors: a central element in innate immune responses. Infect Immun 2002; 70:1033–1041.

    Article  PubMed  CAS  Google Scholar 

  40. Forchielli ML, Walker WA. The role of gut-associated lymphoid tissues and mucosal defence. Br J Nutr 2005; 93(Suppl):S41–S48.

    Article  PubMed  CAS  Google Scholar 

  41. Hatcher GE, Lambrecht RS. Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria. J Dairy Sci 1993; 76:2485–2492.

    Article  PubMed  CAS  Google Scholar 

  42. Macfarlane GT, Cummings JH. The colonic flora, fermentation and large bowel digestive function. In: Phillips SF, Pemberton JH, Shorter RG eds. The Large Intestine: Physiology, Pathophysiology and Disease. New York: Raven Press Ltd, 1991; 51–92.

    Google Scholar 

  43. Salminen S, Bouley C, Boutron-Ruault MC et al. Functional food science and gastrointestinal physiology and function. Br J Nutr 1998; 80:S147–S171.

    Article  PubMed  CAS  Google Scholar 

  44. Roediger WEW. Utilisation of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1982; 83:424–429.

    PubMed  CAS  Google Scholar 

  45. Cavaglieri CR, Nishiyama A, Fernandes LC et al. Differential effects of short-chain fatty acids on proliferation and production of pro-and anti-inflammatory cytokines by cultured lymphocytes. Life Sci 2003; 73: 1683–1690.

    Article  PubMed  CAS  Google Scholar 

  46. Zapolska-Downar D, Siennicka A, Kaczmarczyk M et al. Butyrate inhibits cytokine-induced VCAM-1 and ICAM-1 expression in cultured endothelial cells: the role of NF-κB and PPARα. J Nutr Biochem 2004; 15: 220–228.

    Article  PubMed  CAS  Google Scholar 

  47. Kruh J, Defer N, Tichonicky L. Effects of butyrate on cell proliferation and gene expression. In: Cummings JH, Rombeau JL, Sakata T, eds. Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge: Cambridge University Press, 1995:275–288.

    Google Scholar 

  48. Hague A, Elder DJE, Hicks DJ et al. Apoptosis in colorectal tumour cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int J Cancer 1995; 60:400–406.

    Article  PubMed  CAS  Google Scholar 

  49. Pratt VC, Tappenden KA, McBurney MI et al. Short-chain fatty acid-supplemented total parenteral nutrition improves nonspecific immunity after intestinal resection in rats. JPEN J Parenter Enteral Nutr 1996; 20:264–271.

    Article  PubMed  CAS  Google Scholar 

  50. Ishizaka S, Kikuchi E, Tsujii T. Effects of acetate on human immune system. Immunopharmacol Immunotoxicol 1993; 15: 151–162.

    Article  PubMed  CAS  Google Scholar 

  51. Wu GY, Field CJ, Marliss EB. Glutamine and glucose metabolism in rat splenocytes and mesenteric lymph node lymphocytes. Am J Physiol 1991; 260:E141–E147.

    PubMed  CAS  Google Scholar 

  52. Jenkins DJ, Popovich DG, Kendall CW et al. Metabolic effects of non-absorbable carbohydrates. Scand J Gastroenterol 1999; 222: 10–13.

    Google Scholar 

  53. Jenkins DJ, Kendall CW, Vuksan V. Inulin, oligofructose and intestinal function. J Nutr 1999; 129 (suppl):1431S–1433S.

    PubMed  CAS  Google Scholar 

  54. Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 2001; 73 (suppl):1131S–1141S.

    PubMed  CAS  Google Scholar 

  55. Matsuo K, Ota H, Akamatsu T et al. Histochemistry of the surface mucous gel layer of the human colon. Gut 1997; 40: 782–789.

    Article  PubMed  CAS  Google Scholar 

  56. Hoskins LC, Boulding ET. Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J Clin Invest 1981; 67:163–172.

    Article  PubMed  CAS  Google Scholar 

  57. Fontaine N, Meslin JC, Lory S et al. Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora: effect of inulin in the diet. Br J Nutr 1996; 75: 881–892.

    Article  PubMed  CAS  Google Scholar 

  58. Frankel W, Zhang W, Singh A et al. Fiber: effect on bacterial translocation and intestinal mucin content. World J Surg 1995; 19: 144–149.

    Article  PubMed  CAS  Google Scholar 

  59. Xu D, Lu Q, Deitch EA. Elemental diet-induced bacterial translocation associated with systemic and intestinal immune suppression. JPEN J Parenter Enteral Nutr 1998; 22: 37–41.

    Article  PubMed  CAS  Google Scholar 

  60. Shimotoyodome A, Meguro S, Hase T et al. Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp Biochem Physiol A Mol Integr Physiol 2000; 125:525–531.

    Article  PubMed  CAS  Google Scholar 

  61. Finnie IA, Dwarakanath AD, Taylor BA et al. Colonic mucin synthesis is increased by sodium butyrate. Gut 1995; 36: 93–99.

    Article  PubMed  CAS  Google Scholar 

  62. Gaudier E, Jarry A, Blottiere HM et al. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol 2004; 287: G1168–G1174.

    Article  PubMed  CAS  Google Scholar 

  63. Barcelo A, Claustre J, Moro F et al. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 2000; 46: 218–224.

    Article  PubMed  CAS  Google Scholar 

  64. Zopf D, Roth S. Oligosaccharide anti-infective agents. Lancet 1996; 347: 1017–1021.

    Article  PubMed  CAS  Google Scholar 

  65. Boyle EC, Finlay BB. Bacterial pathogenesis: exploiting cellular adherence. Curr Opin Cell Biol 2003; 15: 633–639.

    Article  PubMed  CAS  Google Scholar 

  66. Pool-Zobel BL. Lactobacillus and Bifidobacterium mediated antigenotoxicity in the colon of rats. Nutr Cancer 1996; 26: 365–380.

    Article  PubMed  CAS  Google Scholar 

  67. Rowland IR. Gut microflora and cancer. In: Leeds AR, Rowland IR eds. Gut Flora and Health—Past, Present and Future. London: The Royal Society of Medicine Press Ltd, 1996: 19–25.

    Google Scholar 

  68. Tzortzis G, Goulas AK, Gee JM et al. A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. J Nutr 2005; 135:1726–1731.

    PubMed  CAS  Google Scholar 

  69. Ross GD, Vetvicka V. CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Clin Exp Immunol 1993; 92: 181–184.

    PubMed  CAS  Google Scholar 

  70. Brown GD, Gordon S. Immune recognition. A new receptor for β-glucans. Nature 2001; 413:36–37.

    Article  PubMed  CAS  Google Scholar 

  71. Murosak S, Muroyama K, Yamamoto Y et al. Nigerooligosaccharides augments natural killer activity of hepatic mononuclear cells in mice. Int Immunopharmacol 2002; 2: 151–159.

    Article  PubMed  Google Scholar 

  72. Schley PD, Field CJ. The immune-enhancing effects of dietary fibers and prebiotics. Br J Nutr 2002; 87 (suppl):S221–S230.

    PubMed  CAS  Google Scholar 

  73. Erickson KL, Medina EA, Hubbard NE. Micronutrients and innate immunity. J Infect Dis 2000; 182:S5–S10.

    Article  PubMed  CAS  Google Scholar 

  74. López-Varela S, González-Gross M, Marcos A. Functional foods and the immune system: a review. Eur J Clin Nutr 2002; 56(suppl 3): S29–S33.

    Article  PubMed  CAS  Google Scholar 

  75. Meydani M. Effect of functional food ingredients: vitamin E modulation of cardiovascular disease and immune status in the elderly. Am J Clin Nutr 2000; 71 (suppl):1665S–1668S.

    PubMed  CAS  Google Scholar 

  76. Weidermann U, Hanson LA, Bremell T et al. Increased translocation of Escherichia coli and development of arthritis in vitamin A-deficient rats. Infect Immun 1995; 63: 3062–3068.

    Google Scholar 

  77. Domeneghini C, Di Giancamillo A, Arrighi S et al. Gut-trophic feed additives and their effects upon the gut structure and intestinal metabolism. State of the art in the pig and perspectives towards humans. Histol Histopathol 2006; 21:273–283.

    PubMed  CAS  Google Scholar 

  78. Holick MF. Vitamin D: its role in cancer prevention and treatment. Prog Biophys Mol Biol 2006; doi:10.1016/j.pbiomolbio.2006.02.014.

    Google Scholar 

  79. Froicu M, Zhu Y, Cantorna MT. Vitamin D receptor is required to control gastrointestinal immunity in IL-10 knockout mice. Immunology 2006; 117:310–318.

    Article  PubMed  CAS  Google Scholar 

  80. Lin R, White JH. The pleiotropic actions of vitamin D. BioEssays 2003; 26:21–28.

    Article  CAS  Google Scholar 

  81. Yu V. Scientific rationale and benefits of nucleotide supplementation of infant formula. J Paediatr Child Health 2002; 38:543–549.

    Article  PubMed  CAS  Google Scholar 

  82. Craig WJ. Health-promoting properties of common herbs. Am J Clin Nutr 1999; 70(suppl): 491S–499S.

    PubMed  CAS  Google Scholar 

  83. Borchers AT, Stern JS, Hackman RM et al. Mushrooms, tumors and immunity. Proc Soc Exp Biol Med 1999; 221:281–293.

    Article  PubMed  CAS  Google Scholar 

  84. Broome CS, McArdle F, Kyle JAM et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr 2004; 80:154–162.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hoyles, L., Vulevic, J. (2008). Diet, Immunity and Functional Foods. In: Huffnagle, G.B., Noverr, M.C. (eds) GI Microbiota and Regulation of the Immune System. Advances in Experimental Medicine and Biology, vol 635. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09550-9_7

Download citation

Publish with us

Policies and ethics