Transmission Power Management for IR-UWB WSN Based on Node Population Density

  • Fernando Ramírez-Mireles
Part of the IFIP – The International Federation for Information Processing book series (IFIPAICT, volume 264)


We propose a method to manage transmission power in nodes belonging to a wireless sensor network (WSN). The scenario contem- plates uncoordinated communications using impulse radio ultra wide- band (IR-UWB). Transmission power is controlled according to the sta- tistical nature of the multiple access interference (MAI) produced by the nodes in the close vicinity of the communicating nodes. The statistical nature of the MAI is a function of the node population density within the area of coverage of the WSN. We show that when the node population density is high enough transmission power savings are possible.


UWB impulse radio ad hoc networks sensor networks. 


  1. 1.
    I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey on sensor networks, in IEEE Communications Magazine, Vol. 40 (2002), pp. 102- 114.CrossRefGoogle Scholar
  2. 2.
    Various authors, Special issue on ultra-wideband communications, in IEEE J. Se- lect. Areas Commun., vol. 24 (2006).Google Scholar
  3. 3.
    U.S. Federal Communications Commission, First Report and Order for UWB Tech- nology, U.S. Federal Communications Commission, (2002).Google Scholar
  4. 4.
    R. A. Sholtz, Multiple-access with time-hopping impulse modulation, in Proc. Mil- itary Communications Conf. (1993) pp. 447-450.Google Scholar
  5. 5.
    L. De Nardis, P. Baldi, and M.-G. Di Benedetto, UWB Ad-Hoc networks, in IEEE Conference on Ultra Wideband Systems and Technologies, (2002), pp. 219 - 223.Google Scholar
  6. 6.
    L. De Nardis, and M.-G. Di Benedetto, Joint communication, ranging, and posi- tioning in low data-rate UWB networks, in 2nd. Workshop on positioning, naviga- tion and communication and 1st ultra-wideband expert talk, (2005), pp. 191-200.Google Scholar
  7. 7.
    F. Ramírez-Mireles, Performance of ultrawideband SSMA using time hopping and M-ary PPM, in IEEE J. Select. Areas Commun., vol. 19 (2001), pp. 1186-1196.CrossRefGoogle Scholar
  8. 8.
    F. Ramírez-Mireles, Performance of UWB SSMA using orthogonal PPM-TH over dense multipath channels, in Springer’s Telecommunications Systems, vol. 36 (2007), pp. 107-115.CrossRefGoogle Scholar
  9. 9.
    J. Fiorina and W. Hachem, On the asymptotic distribution of the correlation re- ceiver output for time-hopped UWB signals, in IEEE Trans. on Signal Processing, vol. 54 (2006), pp. 2529 - 2545.CrossRefGoogle Scholar
  10. 10.
    N. C. Beaulieu and S. Niranjayan, New UWB Receiver Designs Based on a Gaussian-Laplacian Noise-Plus-MAI Model, in IEEE International Conference on Communications, (2007), pp. 4128 - 4133.Google Scholar
  11. 11.
    Y. Dhibi and T. Kaiser, On the impulsiveness of multiuser interferences in TH- PPM-UWB systems, in IEEE Trans. on Signal Processing,vol. 54 (2006), pp. 2853 - 2857.CrossRefGoogle Scholar
  12. 12.
    A. Papoulis, Probability, random variables, and stochastic processes, New York:. McGraw Hill (1965).Google Scholar
  13. 13.
    Robert B. Ash, Information theory, Dover Publications, New York, (1990).Google Scholar
  14. 14.
    O. Vasicek, A test for normality based on sample entropy, Journal of the Royal Statistical Society Series B, vol. 38 (1976), pp. 54-59, 1976.Google Scholar
  15. 15.
    W. Turin, R. Jana, S. Ghassemzadeh, C. Rice, and V. Tarokh, Autoregressive modeling of an indoor UWB channel, in Proc. UWBST Conf.,(2002), pp. 71-74.Google Scholar
  16. 16.
    S. Ghassemzadeh, R. Jana, C. Rice, W. Turin, and V. Tarokh, A statistical path loss model for in-home UWB channel, in Proc. UWBST Conf.,(2002), pp. 59-64.Google Scholar
  17. 17.
    Q. T. Zhang and S. H. Song, "Parsimonious Correlated Nonstationary Models for Real Baseband UWB Data", in IEEE Trans. on Vehic. Technol.,vol. 54, pp. 447-455, Mar. 2005.Google Scholar
  18. 18.
    F. Cuomo, C. Martello, S. Baiocchi, F. Capriotti, "Radio Resource Sharing for Ad Hoc Networking with UWB", in IEEE JSAC,vol. 20 (2002), pp. 1722-1732.Google Scholar
  19. 19.
    H. Jiang, W. Zhuang, and X. Shen, "Distributed medium access control for next generation CDMA wireless networks", in IEEE Wireless Communications,vol. 14 (2007), pp. 25-31.CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Fernando Ramírez-Mireles
    • 1
  1. 1.Instituto Tecnológico Autónomo de México (ITAM)Río Hondo 1, Col. Tizapáan San AngelMéxico CityMéxico

Personalised recommendations