Skip to main content

Abstract

Clayey materials are complex hierarchical and deformable porous media whose structure and organization vary at different spatial scales depending on external conditions, in particular water activity. It is therefore important, on the one hand, to follow all the structural changes that are associated with the adsorption of water molecules in the interlamellar spaces (at the scale of the particles) and, on the other hand, to describe the textural modifications induced at larger scales as a result of the swelling of individual particles. Neutron-based techniques are important to achieving this multiscale description, thanks to some special features of neutrons [e.g., specific interaction with hydrogen atoms, with in addition differential interaction with isotopes (H and D), and high penetration length of neutron beams, which allows easy preparation of versatile sample-cells container]. Finally, water dynamics in the interlayers can be investigated because of the unique interaction of neutrons with hydrogen.

After a brief discussion of the crystal chemistry of swelling clays, some examples of the application of neutron techniques to the study of clays will be given, including application of neutron diffraction to the study of the structure evolution of various expandable clays upon hydration and investigation of interlayer water dynamics by quasielastic neutron scattering (QENS) experiments, illustrating water molecule mobility as a function of hydration states. The difficulties in applying these techniques to materials with such complex crystal chemistry and anisotropic shape will be pointed out.

Clay hydration and swelling induce modification of aggregates at larger spatial scale than the nanometric one investigated by diffraction. Clay fabric and particles organization at the sub-micronic scale can be investigated by small-angle neutron scattering (SANS) experiments. Examples of SANS measurements will be given in the so-called crystalline swelling domain, for water activity below 1. In the clay–water system, as the solid/liquid ratio decreases, gels formation is observed in which individual clay layers are now separated by distances larger than a few nanometers. Experimental studies performed on clay suspensions or gels will be presented, demonstrating that clay layers are equilibrated in gels via electrostatic repulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    According to the IUAPC convention [52], pores are characterized by their diameters, where micropores (\(<\)2 nm), mesopores (26–50 nm), and macropores (\(>\)50 nm) are identified.

References

  1. Harvey C.C., Lagaly G., Handbook of Clay Science, edited by F. Bergaya, B. K. G. Theng, G. Lagaly (Elsevier, Oxford, 2006) pp. 501–540

    Google Scholar 

  2. Dove M. T., Eur. J. Mineral., 14, 203 (2002)

    Google Scholar 

  3. Cebula, D. J., Thomas, R. K., Middleton, S., Ottewill, R. H., White, J. W., Clays Clay Miner., 27, 39 (1979)

    Article  CAS  Google Scholar 

  4. Hawkins, R. K., Egelstaff, P. A., Clays Clay Miner., 28, 19 (1980)

    Article  CAS  Google Scholar 

  5. Joswig W., Fuess H., Mason S.A., Clays Clay Miner., 37, 511 (1989)

    Article  CAS  Google Scholar 

  6. Skipper N. T., Soper A. K., McConnell J. D. C., Refson K., Chem. Phys. Lett., 166, 141 (1990)

    Article  CAS  Google Scholar 

  7. Skipper N. T., Soper A. K., McConnell J. D. C., J. Chem. Phys., 94, 5751 (1991)

    Article  CAS  Google Scholar 

  8. Skipper N. T., Soper A. K., Smalley M. V., J. Phys. Chem., 98, 942 (1994)

    Article  CAS  Google Scholar 

  9. Skipper N. T., Smalley M. V., Williams G. D., Soper A., Thompson C. H., J. Phys. Chem., 99, 14201 (1995)

    Article  CAS  Google Scholar 

  10. Akiba E., Hayakawa H., Hayashi S., Miyawaki R., Tomura S., Shibasaki Y., Izumi F., Asano H., Kamiyama T., Clays Clay Miner., 45, 781 (1997)

    Article  CAS  Google Scholar 

  11. Powell, D. H., Tongkhao, K., Kennedy, S. J., Slade, P. G., Clays Clay Miner., 45, 290 (1997)

    Article  CAS  Google Scholar 

  12. Powell, D. H., Tongkhao, K., Kennedy, S. J., Slade, P. G., Physica B, 243, 387 (1998)

    Article  Google Scholar 

  13. Williams G. D., Soper A. K., Skipper N. T., Smalley, M. V., J. Phys. Chem. B, 102, 8945 (1998)

    Article  CAS  Google Scholar 

  14. Sposito G, Park S.-H., Sutton R., Clays Clay Miner., 47, 192 (1999)

    Article  CAS  Google Scholar 

  15. Skipper N. T., Williams, G. D., de Siqueira A. V. C., Lobban C., Soper A. K., Clay Miner., 35, 283 (2000)

    Article  CAS  Google Scholar 

  16. Pitteloud C., Powell D. H., Fischer H. E., Phys. Chem. Chem. Phys., 3, 5576 (2001)

    Article  Google Scholar 

  17. Swenson J., Smalley M. V., Hatharasinghe, H. L. M., Fragneto G., Langmuir, 17, 3813 (2001)

    Article  CAS  Google Scholar 

  18. Beyer J, Graf von Reichenbach H., Clay Miner., 37, 157 (2002)

    Article  CAS  Google Scholar 

  19. Wasse, J. C., Stebbings, S. L., Masmanidis, S., Hayama, S., Skipper, N. T., J. Molec. Liq., 96, 341 (2002)

    Article  Google Scholar 

  20. Perdigon-Aller A. C., Aston M., Clarke S. M., J. Colloid Interface Sci., 290, 155 (2005)

    Article  CAS  Google Scholar 

  21. Rinnert E., Carteret C., Humbert B., Fragneto-Cusani G., Ramsay J. D. F., Delville A., Robert J. L., Bihannic I., Pelletier M., Michot J. L., J. Phys. Chem. B, 109, 23745 (2005)

    Article  CAS  Google Scholar 

  22. Devineau K., Bihannic I., Michot L. J., Villié ras F., Masrouri F., Cuisinier O., Fragneto G., Michau N., Appl. Clay Sci., 31, 76 (2006)

    Article  CAS  Google Scholar 

  23. Malikova N., Cadéne A., Dubois E., Marry V., Durand-Vidal S., Turq P., Breu J., Longeville S., Zanotti J.-M., J. Phys. Chem. C, 111, 17603 (2007)

    Article  CAS  Google Scholar 

  24. Avery, R. G., Ramsay, J. D. F., J. Colloid Interf. Sci., 109, 448 (1986)

    Article  CAS  Google Scholar 

  25. Ramsay, J. D. F., Swanton, S. W., Bunce, J. J. Chem. Soc. Faraday Trans., 86, 3919 (1990).

    Article  CAS  Google Scholar 

  26. Allen A. J., J. Appl. Cryst., 24, 624 (1991)

    Article  CAS  Google Scholar 

  27. Ramsay, J. D. F., Lindner, P., J. Chem. Soc. Faraday Trans., 89, 4207 (1993)

    Article  CAS  Google Scholar 

  28. Hanley H. J. M., Straty G. C., Tsvetkov F., Langmuir, 10, 3362 (1994)

    Article  CAS  Google Scholar 

  29. Grillo I., Levitz P., Zemb T., Eur. Phys. J. B, 10, 29 (1999)

    Article  CAS  Google Scholar 

  30. Schmidt G., Nakatani A. I., Butler P. D., Karim A., Han C. C., Macromolecules, 35, 7219 (2000)

    Article  Google Scholar 

  31. Schmidt G., Nakatani A. I., Butler P. D., Karim A., Han C. C., Macromolecules, 33, 4725 (2002)

    Article  Google Scholar 

  32. Nettesheim F., Grillo I., Lindner P., Richtering, W., Langmuir, 20, 3947 (2004)

    Article  CAS  Google Scholar 

  33. Itakura T., Bertram W. K., Knott R. B., Appl. Clay Sci., 29, 1 (2005)

    Article  CAS  Google Scholar 

  34. Martin C., Pignon F., Magnin A., Meireles M., Leliévre V., Lindner P., Cabane B., Langmuir, 22, 4065 (2006)

    Article  CAS  Google Scholar 

  35. Olejnik S., Stirling G. C., White J. W., Spec. Disc. Faraday Soc., 1, 194 (1970)

    Article  CAS  Google Scholar 

  36. Dianoux A. J., Volino F., Hervet H., Mol. Phys., 30, 1181 (1975)

    Article  CAS  Google Scholar 

  37. Cebula, D. J., Thomas, R. K., White, J. W., Clays Clay Min., 29, 241 (1981)

    Article  CAS  Google Scholar 

  38. Tuck J. J., Hall P., Hayes M. H. B., Ross D. K., Poinsignon C., J. Chem. Soc. Faraday Trans., 80, 309 (1984)

    Article  CAS  Google Scholar 

  39. Tuck J. J., Hall P., Hayes M. H. B., Ross D. K., Hayter J. K., J. Chem. Soc. Faraday Trans., 81, 833 (1985)

    CAS  Google Scholar 

  40. Poinsignon C., Estrade-Schwarzckopf J., Conard J., Dianoux A. J., Proc. Intl. Clay Conference, edited by L. G. Schultz, H. Van Olphen, F. A. Mumpton (The Clay Minerals Society, Bloomington, Indiana, 1987), p. 284

    Google Scholar 

  41. Poinsignon C., Solid State Ionics, 97, 399 (1997)

    Article  CAS  Google Scholar 

  42. Swenson J., Bergman R., Howells W. S., J. Chem. Phys., 113, 2873 (2000)

    Article  CAS  Google Scholar 

  43. Swenson J., Bergman R., Longeville S.., Howells W. S., Physica B, 301, 28 (1991)

    Article  Google Scholar 

  44. Swenson J., Bergman R., Longeville, S., J. Chem. Phys., 115, 11299 (2001)

    Article  CAS  Google Scholar 

  45. Mamontov, E., J. Chem. Phys., 121, 9193 (2004)

    Article  CAS  Google Scholar 

  46. Malikova N., Cadene A., Marry V., Dubois E., Turq P., Zanotti J.-M., Longeville S. J., Chem. Phys., 317, 226 (2005)

    Article  CAS  Google Scholar 

  47. Chakrabarty D., Gautam S., Mitra S., Gil A., Vicente M. A., Mukhopadhyay R., Chem. Phys. Lett., 426, 296 (2006)

    Article  CAS  Google Scholar 

  48. Malikova N., Cadene A., Marry V., Dubois E., Turq P., J. Phys. Chem. B, 110, 3206 (2006)

    Article  CAS  Google Scholar 

  49. Skipper N. T., Lock P. A., Tililoye J. O., Swenson J., Mirza, Z. A., Howells, W. S., Fernandez-Alonso, F., Chem. Geol., 230, 182 (2006)

    Google Scholar 

  50. Michot L. J., Delville A., Humbert B., Plazanet M., Levitz P., J. Phys Chem. C, 111, 9818 (2007)

    Article  CAS  Google Scholar 

  51. Newman A. C. D., Chemistry of Clays and Clay Minerals (Mineralogical Society, London, 1987)

    Google Scholar 

  52. IUPAC Manual of symbols and terminology for physico-chemical quantities and units, Appendix 2, Definitions, Terminology, and Symbols in Colloid and Surface Chemistry. Part 1. Pure Appl Chem 31, 578 (1972)

    Google Scholar 

  53. Bihannic I., Tchoubar D., Lyonnard S., Besson G., Thomas F. J., Colloid Interface Sci., 240, 211 (2001)

    Article  CAS  Google Scholar 

  54. Norrish K., Quirk J. P., Nature, 173, 225–256 (1954)

    Article  Google Scholar 

  55. Mooney R. W., Keenan A. G., Wood, L. A., J. Amer. Chem. Soc., 74, 1371 (1952)

    Article  CAS  Google Scholar 

  56. Norrish K., Raussell-Colom, J. A., Clays Clays Miner., 10, 123 (1963)

    Article  CAS  Google Scholar 

  57. Sposito G., Prost R., Chem. Rev., 82, 553 (1982)

    Article  CAS  Google Scholar 

  58. Glaeser R., Méring J., C.R. Acad. Sci. Paris, T. 267 Série D, 463 (1968)

    Google Scholar 

  59. Suquet H., Pezerat H., Clays Clay Miner., 35, 353 (1987)

    Article  CAS  Google Scholar 

  60. Michot L. J., Bihannic I., Pelletier M., Rinnert E., Robert J.-L., Am. Miner., 90, 166 (2005)

    Article  CAS  Google Scholar 

  61. Ferrage E., Lanson B., Sakharov B. A., Drits V. A., Am. Miner., 90, 1358 (2005)

    Article  CAS  Google Scholar 

  62. Bérend I., Cases J. M., François M., Uriot J. P., Michot L. J., Masion A., Thomas F., Clays Clay Miner., 43, 324 (1995)

    Article  Google Scholar 

  63. Cases J. M., Berend I., François M., Uriot J. P., Michot L. J., Thomas F., Clays Clay Miner., 45, 8 (1997)

    Article  CAS  Google Scholar 

  64. Van Olphen, H., An Introduction to Clay Colloid Chemistry, 2nd ed. (John Wiley & Sons, New York, 1977)

    Google Scholar 

  65. Güven, N., Clay-water Interface and Its Rheological Implications, edited by N. Güven, R. M. Pollastro (CMS Workshop Lectures, Clay Minerals Society, Boulder, CO, USA, 1992) p. 2

    Google Scholar 

  66. Marry V., Turq P., J. Phys. Chem. B, 107, 1832 (2003)

    Article  CAS  Google Scholar 

  67. Chang F.-R. C., Skipper N. T., Sposito G., Langmuir, 11, 2734 (1995)

    Article  CAS  Google Scholar 

  68. Nagelschmidt G., Zeit. Kristall. 93, 481 (1936)

    CAS  Google Scholar 

  69. Bradley W. F., Grim R. E., Clark G. F., Zeit. Kristall. 97, 260 (1940)

    Google Scholar 

  70. De la Calle C., Suquet H., Dubernat J., Pezerat, H., Clay Miner., 13, 275 (1978)

    Article  Google Scholar 

  71. Push R., Handbook of Clay Science, edited by F. Bergaya, B. K. G. Theng, G. Lagaly (Elsevier, Amsterdam, London, 2006) pp. 703–716

    Google Scholar 

  72. Drits V. A., Tchoubar C., X-Ray Diffraction by Disordered Lamellar Structure. Theory and Applications to Microdivided Silicates and Carbons (Springer-Verlag, Berlin, 1990)

    Google Scholar 

  73. Mering J., Acta Cryst., 2, 371 (1949)

    Article  CAS  Google Scholar 

  74. Bée, M.. Quasi-Elastic Neutron Scattering (Adam Hilger, Philadelphia, PA, 1988)

    Google Scholar 

  75. Bée M., Chem. Phys., 292, 121 (2003)

    Article  Google Scholar 

  76. Egelstaff P. A., An Introduction to the Liquid State (Clarendon, Oxford, UK, 1992)

    Google Scholar 

  77. Glatter O., Kratky O., Small Angle X-ray Scattering (Academic Press Inc., London, 1982)

    Google Scholar 

  78. Brumberger H., Modern Aspects of Small-angle Scattering (NATO ASI Series C, Vol. 451, Kluwer Academic Publishers, Dordrecht, 1995)

    Google Scholar 

  79. Lindner P., Zemb T., Neutron, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter (North Holland, Amsterdam, 2002)

    Google Scholar 

  80. Madsen F. T., Clay Miner., 33, 109–129 (1998)

    Article  CAS  Google Scholar 

  81. Komine H., Ogata, N., Can. Geotech. J. 31, 478 (1994)

    Article  CAS  Google Scholar 

  82. Radlinski A. P., Neutrons Scattering in Earth Sciences, edited by J. J. Rosso (The Mineralogical Society of America, 2006)

    Google Scholar 

  83. Barett E. P., Joyner L. G., Halenda P. H., J. Am. Chem. Soc., 73, 373 (1951)

    Article  Google Scholar 

  84. Mourchid A., Lecolier E., Van Damme H., Levitz, P., Langmuir, 14, 4718 (1998)

    Article  CAS  Google Scholar 

  85. Callaghan I. C., Ottewill, R., Chem. Soc., 57, 110 (1974)

    CAS  Google Scholar 

  86. Michot L. J., Bihannic I., Maddi S., Funari S., Baravian C., Levitz P., Davidson P., Proc. Natl. Acad. Sci., 103, 16101 (2006)

    Article  CAS  Google Scholar 

  87. Michot L. J., Bihannic I., Maddi S., Baravian C., Levitz P., Davidson P., Langmuir, 24; 3127 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Bihannic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bihannic, I., Delville, A., Demé, B., Plazanet, M., Villiéras, F., Michot, L.J. (2009). Clay Swelling: New Insights from Neutron-Based Techniques. In: Liang, L., Rinaldi, R., Schober, H. (eds) Neutron Applications in Earth, Energy and Environmental Sciences. Neutron Scattering Applications and Techniques. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09416-8_18

Download citation

Publish with us

Policies and ethics