Abstract
Clayey materials are complex hierarchical and deformable porous media whose structure and organization vary at different spatial scales depending on external conditions, in particular water activity. It is therefore important, on the one hand, to follow all the structural changes that are associated with the adsorption of water molecules in the interlamellar spaces (at the scale of the particles) and, on the other hand, to describe the textural modifications induced at larger scales as a result of the swelling of individual particles. Neutron-based techniques are important to achieving this multiscale description, thanks to some special features of neutrons [e.g., specific interaction with hydrogen atoms, with in addition differential interaction with isotopes (H and D), and high penetration length of neutron beams, which allows easy preparation of versatile sample-cells container]. Finally, water dynamics in the interlayers can be investigated because of the unique interaction of neutrons with hydrogen.
After a brief discussion of the crystal chemistry of swelling clays, some examples of the application of neutron techniques to the study of clays will be given, including application of neutron diffraction to the study of the structure evolution of various expandable clays upon hydration and investigation of interlayer water dynamics by quasielastic neutron scattering (QENS) experiments, illustrating water molecule mobility as a function of hydration states. The difficulties in applying these techniques to materials with such complex crystal chemistry and anisotropic shape will be pointed out.
Clay hydration and swelling induce modification of aggregates at larger spatial scale than the nanometric one investigated by diffraction. Clay fabric and particles organization at the sub-micronic scale can be investigated by small-angle neutron scattering (SANS) experiments. Examples of SANS measurements will be given in the so-called crystalline swelling domain, for water activity below 1. In the clay–water system, as the solid/liquid ratio decreases, gels formation is observed in which individual clay layers are now separated by distances larger than a few nanometers. Experimental studies performed on clay suspensions or gels will be presented, demonstrating that clay layers are equilibrated in gels via electrostatic repulsions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
According to the IUAPC convention [52], pores are characterized by their diameters, where micropores (\(<\)2 nm), mesopores (26–50 nm), and macropores (\(>\)50 nm) are identified.
References
Harvey C.C., Lagaly G., Handbook of Clay Science, edited by F. Bergaya, B. K. G. Theng, G. Lagaly (Elsevier, Oxford, 2006) pp. 501–540
Dove M. T., Eur. J. Mineral., 14, 203 (2002)
Cebula, D. J., Thomas, R. K., Middleton, S., Ottewill, R. H., White, J. W., Clays Clay Miner., 27, 39 (1979)
Hawkins, R. K., Egelstaff, P. A., Clays Clay Miner., 28, 19 (1980)
Joswig W., Fuess H., Mason S.A., Clays Clay Miner., 37, 511 (1989)
Skipper N. T., Soper A. K., McConnell J. D. C., Refson K., Chem. Phys. Lett., 166, 141 (1990)
Skipper N. T., Soper A. K., McConnell J. D. C., J. Chem. Phys., 94, 5751 (1991)
Skipper N. T., Soper A. K., Smalley M. V., J. Phys. Chem., 98, 942 (1994)
Skipper N. T., Smalley M. V., Williams G. D., Soper A., Thompson C. H., J. Phys. Chem., 99, 14201 (1995)
Akiba E., Hayakawa H., Hayashi S., Miyawaki R., Tomura S., Shibasaki Y., Izumi F., Asano H., Kamiyama T., Clays Clay Miner., 45, 781 (1997)
Powell, D. H., Tongkhao, K., Kennedy, S. J., Slade, P. G., Clays Clay Miner., 45, 290 (1997)
Powell, D. H., Tongkhao, K., Kennedy, S. J., Slade, P. G., Physica B, 243, 387 (1998)
Williams G. D., Soper A. K., Skipper N. T., Smalley, M. V., J. Phys. Chem. B, 102, 8945 (1998)
Sposito G, Park S.-H., Sutton R., Clays Clay Miner., 47, 192 (1999)
Skipper N. T., Williams, G. D., de Siqueira A. V. C., Lobban C., Soper A. K., Clay Miner., 35, 283 (2000)
Pitteloud C., Powell D. H., Fischer H. E., Phys. Chem. Chem. Phys., 3, 5576 (2001)
Swenson J., Smalley M. V., Hatharasinghe, H. L. M., Fragneto G., Langmuir, 17, 3813 (2001)
Beyer J, Graf von Reichenbach H., Clay Miner., 37, 157 (2002)
Wasse, J. C., Stebbings, S. L., Masmanidis, S., Hayama, S., Skipper, N. T., J. Molec. Liq., 96, 341 (2002)
Perdigon-Aller A. C., Aston M., Clarke S. M., J. Colloid Interface Sci., 290, 155 (2005)
Rinnert E., Carteret C., Humbert B., Fragneto-Cusani G., Ramsay J. D. F., Delville A., Robert J. L., Bihannic I., Pelletier M., Michot J. L., J. Phys. Chem. B, 109, 23745 (2005)
Devineau K., Bihannic I., Michot L. J., Villié ras F., Masrouri F., Cuisinier O., Fragneto G., Michau N., Appl. Clay Sci., 31, 76 (2006)
Malikova N., Cadéne A., Dubois E., Marry V., Durand-Vidal S., Turq P., Breu J., Longeville S., Zanotti J.-M., J. Phys. Chem. C, 111, 17603 (2007)
Avery, R. G., Ramsay, J. D. F., J. Colloid Interf. Sci., 109, 448 (1986)
Ramsay, J. D. F., Swanton, S. W., Bunce, J. J. Chem. Soc. Faraday Trans., 86, 3919 (1990).
Allen A. J., J. Appl. Cryst., 24, 624 (1991)
Ramsay, J. D. F., Lindner, P., J. Chem. Soc. Faraday Trans., 89, 4207 (1993)
Hanley H. J. M., Straty G. C., Tsvetkov F., Langmuir, 10, 3362 (1994)
Grillo I., Levitz P., Zemb T., Eur. Phys. J. B, 10, 29 (1999)
Schmidt G., Nakatani A. I., Butler P. D., Karim A., Han C. C., Macromolecules, 35, 7219 (2000)
Schmidt G., Nakatani A. I., Butler P. D., Karim A., Han C. C., Macromolecules, 33, 4725 (2002)
Nettesheim F., Grillo I., Lindner P., Richtering, W., Langmuir, 20, 3947 (2004)
Itakura T., Bertram W. K., Knott R. B., Appl. Clay Sci., 29, 1 (2005)
Martin C., Pignon F., Magnin A., Meireles M., Leliévre V., Lindner P., Cabane B., Langmuir, 22, 4065 (2006)
Olejnik S., Stirling G. C., White J. W., Spec. Disc. Faraday Soc., 1, 194 (1970)
Dianoux A. J., Volino F., Hervet H., Mol. Phys., 30, 1181 (1975)
Cebula, D. J., Thomas, R. K., White, J. W., Clays Clay Min., 29, 241 (1981)
Tuck J. J., Hall P., Hayes M. H. B., Ross D. K., Poinsignon C., J. Chem. Soc. Faraday Trans., 80, 309 (1984)
Tuck J. J., Hall P., Hayes M. H. B., Ross D. K., Hayter J. K., J. Chem. Soc. Faraday Trans., 81, 833 (1985)
Poinsignon C., Estrade-Schwarzckopf J., Conard J., Dianoux A. J., Proc. Intl. Clay Conference, edited by L. G. Schultz, H. Van Olphen, F. A. Mumpton (The Clay Minerals Society, Bloomington, Indiana, 1987), p. 284
Poinsignon C., Solid State Ionics, 97, 399 (1997)
Swenson J., Bergman R., Howells W. S., J. Chem. Phys., 113, 2873 (2000)
Swenson J., Bergman R., Longeville S.., Howells W. S., Physica B, 301, 28 (1991)
Swenson J., Bergman R., Longeville, S., J. Chem. Phys., 115, 11299 (2001)
Mamontov, E., J. Chem. Phys., 121, 9193 (2004)
Malikova N., Cadene A., Marry V., Dubois E., Turq P., Zanotti J.-M., Longeville S. J., Chem. Phys., 317, 226 (2005)
Chakrabarty D., Gautam S., Mitra S., Gil A., Vicente M. A., Mukhopadhyay R., Chem. Phys. Lett., 426, 296 (2006)
Malikova N., Cadene A., Marry V., Dubois E., Turq P., J. Phys. Chem. B, 110, 3206 (2006)
Skipper N. T., Lock P. A., Tililoye J. O., Swenson J., Mirza, Z. A., Howells, W. S., Fernandez-Alonso, F., Chem. Geol., 230, 182 (2006)
Michot L. J., Delville A., Humbert B., Plazanet M., Levitz P., J. Phys Chem. C, 111, 9818 (2007)
Newman A. C. D., Chemistry of Clays and Clay Minerals (Mineralogical Society, London, 1987)
IUPAC Manual of symbols and terminology for physico-chemical quantities and units, Appendix 2, Definitions, Terminology, and Symbols in Colloid and Surface Chemistry. Part 1. Pure Appl Chem 31, 578 (1972)
Bihannic I., Tchoubar D., Lyonnard S., Besson G., Thomas F. J., Colloid Interface Sci., 240, 211 (2001)
Norrish K., Quirk J. P., Nature, 173, 225–256 (1954)
Mooney R. W., Keenan A. G., Wood, L. A., J. Amer. Chem. Soc., 74, 1371 (1952)
Norrish K., Raussell-Colom, J. A., Clays Clays Miner., 10, 123 (1963)
Sposito G., Prost R., Chem. Rev., 82, 553 (1982)
Glaeser R., Méring J., C.R. Acad. Sci. Paris, T. 267 Série D, 463 (1968)
Suquet H., Pezerat H., Clays Clay Miner., 35, 353 (1987)
Michot L. J., Bihannic I., Pelletier M., Rinnert E., Robert J.-L., Am. Miner., 90, 166 (2005)
Ferrage E., Lanson B., Sakharov B. A., Drits V. A., Am. Miner., 90, 1358 (2005)
Bérend I., Cases J. M., François M., Uriot J. P., Michot L. J., Masion A., Thomas F., Clays Clay Miner., 43, 324 (1995)
Cases J. M., Berend I., François M., Uriot J. P., Michot L. J., Thomas F., Clays Clay Miner., 45, 8 (1997)
Van Olphen, H., An Introduction to Clay Colloid Chemistry, 2nd ed. (John Wiley & Sons, New York, 1977)
Güven, N., Clay-water Interface and Its Rheological Implications, edited by N. Güven, R. M. Pollastro (CMS Workshop Lectures, Clay Minerals Society, Boulder, CO, USA, 1992) p. 2
Marry V., Turq P., J. Phys. Chem. B, 107, 1832 (2003)
Chang F.-R. C., Skipper N. T., Sposito G., Langmuir, 11, 2734 (1995)
Nagelschmidt G., Zeit. Kristall. 93, 481 (1936)
Bradley W. F., Grim R. E., Clark G. F., Zeit. Kristall. 97, 260 (1940)
De la Calle C., Suquet H., Dubernat J., Pezerat, H., Clay Miner., 13, 275 (1978)
Push R., Handbook of Clay Science, edited by F. Bergaya, B. K. G. Theng, G. Lagaly (Elsevier, Amsterdam, London, 2006) pp. 703–716
Drits V. A., Tchoubar C., X-Ray Diffraction by Disordered Lamellar Structure. Theory and Applications to Microdivided Silicates and Carbons (Springer-Verlag, Berlin, 1990)
Mering J., Acta Cryst., 2, 371 (1949)
Bée, M.. Quasi-Elastic Neutron Scattering (Adam Hilger, Philadelphia, PA, 1988)
Bée M., Chem. Phys., 292, 121 (2003)
Egelstaff P. A., An Introduction to the Liquid State (Clarendon, Oxford, UK, 1992)
Glatter O., Kratky O., Small Angle X-ray Scattering (Academic Press Inc., London, 1982)
Brumberger H., Modern Aspects of Small-angle Scattering (NATO ASI Series C, Vol. 451, Kluwer Academic Publishers, Dordrecht, 1995)
Lindner P., Zemb T., Neutron, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter (North Holland, Amsterdam, 2002)
Madsen F. T., Clay Miner., 33, 109–129 (1998)
Komine H., Ogata, N., Can. Geotech. J. 31, 478 (1994)
Radlinski A. P., Neutrons Scattering in Earth Sciences, edited by J. J. Rosso (The Mineralogical Society of America, 2006)
Barett E. P., Joyner L. G., Halenda P. H., J. Am. Chem. Soc., 73, 373 (1951)
Mourchid A., Lecolier E., Van Damme H., Levitz, P., Langmuir, 14, 4718 (1998)
Callaghan I. C., Ottewill, R., Chem. Soc., 57, 110 (1974)
Michot L. J., Bihannic I., Maddi S., Funari S., Baravian C., Levitz P., Davidson P., Proc. Natl. Acad. Sci., 103, 16101 (2006)
Michot L. J., Bihannic I., Maddi S., Baravian C., Levitz P., Davidson P., Langmuir, 24; 3127 (2008).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Bihannic, I., Delville, A., Demé, B., Plazanet, M., Villiéras, F., Michot, L.J. (2009). Clay Swelling: New Insights from Neutron-Based Techniques. In: Liang, L., Rinaldi, R., Schober, H. (eds) Neutron Applications in Earth, Energy and Environmental Sciences. Neutron Scattering Applications and Techniques. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09416-8_18
Download citation
DOI: https://doi.org/10.1007/978-0-387-09416-8_18
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-09415-1
Online ISBN: 978-0-387-09416-8
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)