Skip to main content

New Analysis of Single Molecule Fluorescence Using Series of Photon Arrival Times

  • Chapter
Reviews in Fluorescence 2004

Part of the book series: Reviews in Fluorescence 2004 ((RFLU,volume 2004))

Abstract

Until recently, single molecule fluorescence experiments have been made by dividing the time into a set of intervals and to observe the number of fluorescence photons arriving in each interval. It is obvious that the detected photons per time interval carry less information than the arrival times of the photons themselves. Indeed, from the arrival times, one can still calculate the number of photons in any user-defined interval, whereas when only the number of photons in an interval is recorded, information about their positions in time is lost. In this chapter we present a new analysis of single molecule fluorescence data based on the positions in time of the detected fluorescence photons. We derive mathematically different statistical characteristics describing the single molecule fluorescence experiment assuming an immobilized molecule. The theory of random point processes using the generating functionals formalism is ideally suited for a consistent description, linking the statistical characteristics of the excitation and detected photons to the statistical characteristics of the single motionless molecule. The following statistical characteristics are described: the probability density distributions of the single and first photocount time positions in a user-defined detection interval, the probability distribution of the number of photocounts per user-defined detection interval, the time correlation function, and the inter-arrival time probability density distribution. The new analysis is illustrated using the traces of photon arrival times of individual rhodamine 6G (R6G) molecules to obtain information on their photophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Nie and R. Zare, Optical detection of single molecules, Annu. Rev. Biophys. Biomol. Struct. 26, 567–596 (1997).

    Article  CAS  Google Scholar 

  2. X. S. Xie and J. K. Trautman, Optical studies of single molecules at room temperature, Annu. Rev. Phys. Chem. 49, 441–480 (1998).

    Article  CAS  Google Scholar 

  3. W. E. Moerner and M. Orrit, Illuminating single molecules in condensed matter, Science 283, 1670–1676 (1999).

    Article  CAS  Google Scholar 

  4. S. Weiss, Fluorescence spectroscopy of single biomolecules, Science 283, 1676–1683 (1999).

    Article  CAS  Google Scholar 

  5. K. D. Weston, P. J. Carson, J. A. DeAro and S. K. Buratto, Single-molecule detection fluorescence of surface-bound species in vacuum, Chem. Phys. Lett. 308, 58–64 (1999).

    Article  CAS  Google Scholar 

  6. A. M. Berezhkovskii, A. Szabo and G. H. Weiss, Theory of single-molecule fluorescence spectroscopy of two-state systems, J. Chem. Phys. 110, 9145–9150 (1999).

    Article  CAS  Google Scholar 

  7. B. Saleh, Photoelectron Statistics (Springer, Berlin, 1978).

    Google Scholar 

  8. K. D. Weston and S. K. Buratto, Millisecond intensity fluctuations of single molecules at room temperature, J. Phys. Chem. A 102, 3635–3638(1998).

    Article  CAS  Google Scholar 

  9. H. Yang and X. S. Xie, Probing single-molecule dynamics photon by photon, J. Chem. Phys. 117, 10965–10979 (2002).

    Article  CAS  Google Scholar 

  10. H. Yang and X. S. Xie, Statistical approaches for probing single-molecule dynamics photon-by-photon, Chem. Phys. 284, 423–437 (2002).

    Article  CAS  Google Scholar 

  11. R. Verberk and M. Orrit, Photon statistics in the fluorescence of single molecules and nanocrystals: Correlation functions versus distributions of on- and off-times, J. Chem. Phys. 119, 2214–2222 (2003).

    Article  CAS  Google Scholar 

  12. L. Fleury, J. M. Segura, G. Zumofen, B. Hecht and U. P. Wild, Nonclassical photon statistics in singlemolecule fluorescence at room temperature, Phys. Rev. Lett. 84, 1148–1151 (2000).

    Article  CAS  Google Scholar 

  13. A. Molski, J. Hofkens, T. Gensch, N. Boens and F. De Schryver, Theory of time-resolved single-molecule fluorescence spectroscopy, Chem. Phys. Lett. 318, 325–332 (2000).

    Article  CAS  Google Scholar 

  14. W.-T. Yip, D. Hu, J. Yu, D. A. Vanden Bout and P. F. Barbara, Classifying the photophysical dynamics of single- and multiple-chromophoric molecules by single molecule spectroscopy, J. Phys. Chem. 102, 7564–7575 (1998).

    Article  CAS  Google Scholar 

  15. S. Jang and R. J. Silbey, Theory of single molecule line shapes of multichromophoric macromolecules, J. Chem. Phys. 118, 9312–9323 (2003).

    Article  CAS  Google Scholar 

  16. C. Eggeling, J. Widengren, R. Rigler and C. A. M. Seidel, Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis, Anal. Chem. 70, 2651–2659 (1998).

    Article  CAS  Google Scholar 

  17. S. Wennmalm and R. Rigler, On death numbers and survival times of single dye molecules, J Phys. Chem. 103, 2516–2519 (1999).

    Article  CAS  Google Scholar 

  18. D. E. Koppel, Statistical accuracy in fluorescence correlation spectroscopy, Phys. Rev. A 10, 1938–1945 (1974).

    Article  Google Scholar 

  19. E. Novikov, N. Boens and J. Hofkens, New strategies for low light level detection in single molecule spectroscopy, Chem. Phys. Lett. 338, 151–158 (2001).

    Article  CAS  Google Scholar 

  20. D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes (Springer, New York, 1988).

    Google Scholar 

  21. D. R. Cox and V. Isham, Point Processes (Chapman and Hall, London, 1980).

    Google Scholar 

  22. V. V. Apanasovich, A. A. Koljada and A. F. Chernjayski, The Statistical Analysis of Series of Random Events in Physical Experiment (University Press, Minsk, 1988) (in Russian).

    Google Scholar 

  23. J. Grandell, Double stochastic point processes (Berlin, Springer, 1978).

    Google Scholar 

  24. E. Novikov, J. Hofkens, M. Cotlet, M. Maus, F.C. De Schryver and N. Boens, A new analysis method of single molecule fluorescence using series of photon arrival times: theory and experiment, Spectrochim. Acta A 57, 2109–2133 (2001).

    Article  CAS  Google Scholar 

  25. W. Feller, An Introduction to Probability Theory and Its Applications, Volume 1 (John Wiley & Sons, New York, 1968)

    Google Scholar 

  26. V. V. Apanasovich and E. G. Novikov, Branching point processes with independent transformations, J. Phys. A: Math. Gen. 28, 433–443 (1995).

    Article  CAS  Google Scholar 

  27. K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge University Press, Cambridge, 1997).

    Book  Google Scholar 

  28. A. J. Jerri, Introduction to Integral Equations with Applications (John Wiley and Sons, New York, 1999).

    Google Scholar 

  29. H. Stehfest, Numerical inversion of laplace transforms, Communications of the ACM13, 47–49 (1970).

    Article  Google Scholar 

  30. J. Enderlein, P. M. Goodwin, A. Van Orden, W. P. Ambrose, R. Erdmann and R. A. Keller, A maximum likelihood estimator to distinguish single molecules by their fluorescence decays, Chem. Phys. Lett. 270, 464–470 (1997).

    Article  CAS  Google Scholar 

  31. J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, and N. F. van Hulst, Time-varing triplet state lifetimes of single molecules, Phys. Rev. Lett. 83, 2155–2158 (1999).

    Article  CAS  Google Scholar 

  32. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noël Boens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Novikov, E., Hofkens, J., Cotlet, M., Schryver, F.C.D., Boens, N. (2004). New Analysis of Single Molecule Fluorescence Using Series of Photon Arrival Times. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2004. Reviews in Fluorescence 2004, vol 2004. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48672-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48672-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0992-6

  • Online ISBN: 978-0-306-48672-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics