Skip to main content

Luminescent Semiconductor Quantum Dots Nanoassemblies for Bioanalysis

  • Chapter
Book cover Reviews in Fluorescence 2004

Part of the book series: Reviews in Fluorescence 2004 ((RFLU,volume 2004))

  • 378 Accesses

Abstract

CdS and CdSe luminescent quantum dots (QDs) have been widely investigated for their luminescence properties 1–20. Luminescent QDs show a number of advantages compared to organic fluorophores commonly used in biological applications. QDs exhibit higher photostability than organic dyes. Their emission band is size dependent due to quantum confinement effects. For example, 3 nm CdSe QDs emit green light while 6 nm CdSe QDs emit red light. It is therefore possible to prepare a series of solutions showing different emission colors by using only one type of semiconductor material. The emission spectra of semiconductor QDs are symmetric and sharp with a full width at half maximum (FWHM) as narrow as 30 nm. On the other hand, emission spectra of organic dyes are asymmetric and broad. This precludes the simultaneous use of several organic dyes to analyze multi-analyte samples due to overlap between their broad emission peaks. Luminescent semiconductor QDs have a wide excitation spectrum which enable the excitation of QDs of different size with a single excitation wavelength. In contrast, multiple excitation wavelengths are needed to simultaneously excite several organic fluorophores. Recognizing their potential bioanalytical researchers have recently applied luminescent QDs as biological labels 21–26, selective ions probes 27 and luminescent gas sensors 28.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referencess

  1. Z. A. Peng, X. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor J. Am. Chem. Soc. 123(1); 183–184 (2001).

    Article  CAS  Google Scholar 

  2. H. Bekele, J. H. Fendler, J. W. Kelly, Self-assembling peptidomimetic monolayer nucleates oriented CdS nanocrystals J. Am. Chem. Soc. 121(31) 7266–7267 (1999).

    Article  CAS  Google Scholar 

  3. B. I. Lemon, R. M. Crooks, Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots. J. Am. Chem. Soc. 122(51); 12886–12887 (2000).

    Article  CAS  Google Scholar 

  4. C.-C. Chen, C.-Y. Chao, Z.-H. Lang, Simple solution-phase synthesis of soluble CdS and CdSe nanorods. Chem. Mater. 12(6); 1516–1518 (2000).

    Article  CAS  Google Scholar 

  5. S. K. Haram, B. M. Quinn, A. J. Bard, Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. J. Am. Chem. Soc. 123(36); 8860–8861 (2001).

    Article  CAS  Google Scholar 

  6. P. Zhang, L. Gao, Synthesis and characterization of CdS nanorods via hydrothermal microemulsion. Langmuir, 19(1); 208–210 (2003).

    Article  Google Scholar 

  7. W. Xu, Y. Liao, D. L. Akins, Formation of CdS nanoparticles within modifiied MCM-41 and SBA-15. J. Phys. Chem. B. 106(43); 11127–11131 (2002).

    Article  CAS  Google Scholar 

  8. L.-S. Li, J. Hu, W. Yang, A. P. Alivisatos, Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 1(7); 349–351 (2001).

    Article  CAS  Google Scholar 

  9. M. Artemyev, B. Moller, U. Woggon, Unidirectional alignment of CdSe nanorods. Nano Lett. 3(4); 509–512 (2003).

    Article  CAS  Google Scholar 

  10. L. Qu, Z. A. Peng, X. Peng, Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1(6); 333–337 (2001).

    Article  CAS  Google Scholar 

  11. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxidetrioctylphospine mixture. Nano Lett. 1(4); 207–211 (2001).

    Article  CAS  Google Scholar 

  12. A. Striolo, J. Ward, J. M. Prausnitz, W. J. Parak, D. Zanchet, D. Gerion, D. Milliron, A. P. Alivisatos, Molecular weight, osmotic Second viral coeffiicient, and extinction coefficient of colloidal CdSe nanocrystals. J. Phys. Chem. B. 106(21); 5500–5505 (2002).

    Article  CAS  Google Scholar 

  13. D. M. Willard, L. L. Carillo, J. Jung, A. Van Orden, CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett 1(9); 469–474 (2001).

    Article  CAS  Google Scholar 

  14. L. Manna, E. C. Scher, A. P. Alivisatos, Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122(51); 12700–12706 (2000).

    Article  CAS  Google Scholar 

  15. J. Aldana, Y. A. Wang, X. Peng, Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123(36); 8844–8850 (2001).

    Article  CAS  Google Scholar 

  16. W. Guo, J. J. Li, Y. A. Wang, X. Peng, Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. J. Am. Chem. Soc. 125(13); 3901–3909 (2003).

    Article  CAS  Google Scholar 

  17. A. Schroedter, H. Weller, R. Eritja, W. E. Ford, J. M. Wessels, Biofunctionalization of silica-coated CdTe and gold nanocrystals. Nano Lett. 2(12); 1363–1367 (2002).

    Article  CAS  Google Scholar 

  18. D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J. Phys. Chem. B. 105(12); 2260–2263 (2001).

    Article  CAS  Google Scholar 

  19. S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, C. de Mello Donega, Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 3(4); 503–507 (2003).

    Article  CAS  Google Scholar 

  20. S. Wang, N. Mamedova, N. A. Kotov, W. Chen, J. Studer, Antigen/Antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett. 2(8); 817–822 (2002).

    Article  CAS  Google Scholar 

  21. S. Pathak, S.-K. Choi, N. Amheim, M. E. Thompson, Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123(17); 4103–4104 (2001).

    Article  CAS  Google Scholar 

  22. E. R. Goldman, E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T. Tran, G. P.Anderson, Avidin: a natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 124(22); 6378–6382 (2002).

    Article  CAS  Google Scholar 

  23. S. J. Rosenthal, I. Tomlinson, E. M. Adkins, S. Schroeter, S. Adams, L. Swafford, J. McBride, Y. Wang, L. J. DeFelice, R. D. Blakely, Targeting cell surface receptors with ligand-conjugated nanocrystals. J. Am. Chem. Soc. 124(17); 4586–4594 (2002).

    Article  CAS  Google Scholar 

  24. E. R. Goldman, G. P. Anderson, P. T. Tran, H. Mattoussi, P. T. Charles, J. M. Mauro, Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74(4) 841–847 (2002).

    Article  CAS  Google Scholar 

  25. W. C. W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  26. M. Jr. Bruchez, M. Moronne, P. Gin, S. A. Weiss, A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science. 281(5385), 2013–2016 (1998).

    Article  Google Scholar 

  27. Y. Chen, Z. Rosenzweig, Luminescent CdS quantum dots as selective ion probes. Anal. Chem. 74(19); 5132–5138 (2002).

    Article  CAS  Google Scholar 

  28. A. Y. Nazzal, L. Qu, X. Peng, M. Xiao, Photoactivated CdSe nanocrystals as nanosensors for gases, Nano Letters, 3(6); 819–822 (2003).

    Article  CAS  Google Scholar 

  29. M. Han, X. Gao, J. Su, S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotech. 19(7), 631–635 (2001).

    Article  CAS  Google Scholar 

  30. N. Gapaonik, I. L. Radtchenko, G. B. Sukhorukov, H. Weller, A. L. Rogach , Toward encoding combinatorial libraries: Charge-driven microencapsulation of semiconductor nanocrystals luminescing in the visible and near IR. Adv Mater. 14(12), 879–882 (2002).

    Article  Google Scholar 

  31. S. Chang, L. Liu, S. A. Asher: Preparation and properties of tailored morphology, monodisperse colloidal silica-cadmium sulfide nanocomposites. J. Am. Chem. Soc. 116(15), 6739–6744 (1994).

    Article  CAS  Google Scholar 

  32. S. Chang, L. Liu, S. A. Asher, Creation of templated complex topological morphologies in colloidal silica. J. Am. Chem. Soc. 116(15), 6745–6747 (1994).

    Article  CAS  Google Scholar 

  33. A. L. Rogach, D. Nagesha, J. W. Ostrander, M. Giersig, N. A. Kotov, Raisin bun-type composite spheres of silica and semiconductor nanocrystals Chem. Mater, 12(9), 2676–2685 (2000).

    Article  CAS  Google Scholar 

  34. L. Qu, X. Peng, Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124(9) 2049 – 2055 (2002).

    Article  CAS  Google Scholar 

  35. A. M. Hines, P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals J. Phys. Chem. 100(2), 468–471 (1996).

    Article  CAS  Google Scholar 

  36. K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Preparation and characterization of Au colloid monolayers. Anal. Chem. 67, 735–743 (1995)

    Article  CAS  Google Scholar 

  37. J. C. Fendler, E. J. Fendler, Catalysis in micellar and macromolecular systems; (Academic Press: New York, 1975).

    Google Scholar 

  38. S. Riegelman, N. A. Allawala, M. K. Hrenoff, L. A. Strait, The ultraviolet absorption spectrum as a criterion of the type of solubilization. J. Colloid Sci. 13, 208–217 (1958).

    Article  CAS  Google Scholar 

  39. Z. Gao, A. N. Lukyanov, A. Singhal, V. P. Torchilin, Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett. 2(9), 979–982 (2002)

    Article  CAS  Google Scholar 

  40. C. Liu, Z. J. Zhang, Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem. Mater.; 13(6);2092–2096 (2001).

    Article  CAS  Google Scholar 

  41. J. P. Cason, K. Khambaswadkar, C. B. Roberts, Supercritical fluid and compressed solvent effects on metallic nanoparticle synthesis in reverse micelles. Ind. Eng Chem. Res., 39(12) 4749–4755 (2000)

    Article  CAS  Google Scholar 

  42. R. B. Khomane, A. Manna, A. B. Mandale, B. D. Kulkarni, Synthesis and characterization of dodecanethiol-capped cadmium sulfide nanoparticles in a winsor II microemulsion of diethyl ether/AOT/water. Langmuir; 18(21) 8237–8240 (2002).

    Article  CAS  Google Scholar 

  43. M. Wilchek, E. A. Bayer, The avidin-biotin complex in bioanalytical applications. Anal Biochem J..,171(1):1–32 (1988)

    Article  CAS  Google Scholar 

  44. Yongfen Chen and Zeev Rosenzweig, Synthesis and application of silica nanospheres that contain luminescent quantum dots as amplifiers in digital counting immunoassays, (to be published).

    Google Scholar 

  45. F. Caruso, D. Trau, H. Mohwald, R. Renneberg, Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16(4), 1485–1488 (2000).

    Article  CAS  Google Scholar 

  46. M. Mammen, S. Choi, G. M. Whitesides, Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37(20), 2754–2794 (1998).

    Article  Google Scholar 

  47. G. Decher, J. D. Hong, Buildup of ultrathin multulayer films by a self-assembly process 1. consecutively alternating adsorption of anionic and cationic bipolar amphiphiles on charged surfaces Makromol. Chem. Macromol. Symp. 46, 321–327 (1991).

    Article  CAS  Google Scholar 

  48. G. Decher, J. D. Hong, J. Schmitt, Buildup of ultrathin multulayer films by a self-assembly process 3. consecutively alternating adsorption of anionic and cationic ployelectrolytes on charged surfaces. Thin Solid Films, 210(1–2), 831–835 (1992).

    Article  Google Scholar 

  49. J. Anzai, T. Hoshi, N. Nakamura, Construction of multilayer thin films containing avidin by a layer-by-layer deposition of avidin and poly(anion)s. Langmuir, 16(15), 6306–6311 (2000).

    Article  CAS  Google Scholar 

  50. R. Ballerstadt, J. S. Schultz, A Fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring. Anal. Chem., 72 (17), 4185 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, Y., Rosenzweig, Z. (2004). Luminescent Semiconductor Quantum Dots Nanoassemblies for Bioanalysis. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2004. Reviews in Fluorescence 2004, vol 2004. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48672-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48672-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0992-6

  • Online ISBN: 978-0-306-48672-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics