Skip to main content

Arenedicarboximides as Versatile Building Blocks for Fluorescent Photoinduced Electron Transfer Saccharide Sensors

  • Chapter
  • 377 Accesses

Part of the book series: Reviews in Fluorescence 2004 ((RFLU,volume 2004))

Abstract

Within the last decade a considerable amount of effort has been directed towards the detection of saccharides by fluorescent chemosensors.1–3 Such studies have shown that the response which signals an interaction between carbohydrate and receptor is frequently communicated by changes in fluorescence intensity either through chelation enhanced-quenching (CHEQ) or chelation-enhanced fluorescence (CHEF).4,5 While significant advances continue in the areas of chemosensors for saccharides, invariably, one or more of the requisite conditions necessary for biologists to measure these analytes goes unmet. For carbohydrate measurements, conditions such as neutral pH as well as selectivity in an aqueous testing environment are essential. In addition to these physiological requirements, for effective photoinduced electron transfer (PET), the signaling properties of the chemosensor must also meet certain criteria. Three critical prerequisites of the fluorescent sensor that must be satisfied for carbohydrate recognition have been outlined by Shinkai: strong fluorescence intensity, large pH dependent change in I max, and shift of the pH-I max profile to lower pH region in the presence of saccharides.6

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.D. James, P. Linnane, S. Shinkai, Fluorescent saccharide receptors: a sweet solution to the design, assembly and evaluation of boronic acid derived PET sensors, Chem. Commun. 281–288 (1996).

    Google Scholar 

  2. T. D. James, K. R. A. S. Sandanayake, S. Shinkai, Recognition of sugars and related compounds by “reading-out” type interfaces, Supramol Chem. 6, 141–157 (1995).

    Article  CAS  Google Scholar 

  3. T. D. James, K. R. A. S. Sandanayake, S. Shinkai, Saccharide sensing with molecular receptors based on boronic acid, Angew. Chem. Int. Ed. Engl. 35, 1910–1922 (1996).

    Article  Google Scholar 

  4. A. W. Czarnik, Chemical communication in water using fluorescent chemosensors, Ace. Chem. Res. 27, 302–308 (1994).

    Article  CAS  Google Scholar 

  5. A. W. Czamik, Fluorescent Chemosensors for Ion and Molecule Recognition.; American Chemical Society: Washington, D.C., 1993.

    Google Scholar 

  6. H. Suenaga, M. Mikami, K. R. A. S. Sandanayake, S. Shinkai, Screening of Fluorescent boronic acids for sugar sensing which shows a large fluorescence change, Tetrahedron Lett. 36, 4825–4828 (1995).

    CAS  Google Scholar 

  7. N. DiCesare, J.R. Lakowicz, Chalcone-analogue fluorescent probes for saccharides signaling using the boronic acid group, Tetrahedron Lett. 43, 2615–2618 (2002).

    Article  CAS  Google Scholar 

  8. N. DiCesare, J.R. Lakowicz, Fluorescent probe for monosaccharides based on functionalized boron- dipyronemethane with a boronic acid group, Tetrahedron Lett. 42, 9105–9108 (2001).

    Article  CAS  Google Scholar 

  9. N. DiCesare, J.R. Lakowicz, A new highly fluorescent probe for monosaccharides based on a donor-acceptor diphenyloxazole, Chem. Commun. 2022–2023 (2001).

    Google Scholar 

  10. H. Eggert, J. Frederiksen, C. Morin, J.-C. Norrild, A new glucose-selective fluorescent bis-boronic acid. first report of strong -furanose complexation in aqueous solution at physiological pH, J. Org. Chem. 64, 3846–3852(1999).

    Article  CAS  Google Scholar 

  11. H. Cao, D. I. Diaz, N. DiCesare, J. R. Lakowicz, M. D. Heagy, Monoboronic acid sensor that displays anomalous fluorescence sensitivity to glucose, Org. Lett. 4, 1503–1505 (2002).

    Article  CAS  Google Scholar 

  12. D. P. Adhikiri, M. D. Heagy, Fluorescent chemosensor for carbohydrates which shows large change in chelation-enhanced quenching, Tetrahedron Lett. 40, 7893–7896 (1999).

    Article  CAS  Google Scholar 

  13. R.W. Middleton, J. Parrick, E. D. Clarke, P. Wardman, Synthesis and fluorescence of N-substituted-1,8- naphthalimides, J. Heterocyclic Chem. 23, 849–855 (1986).

    Article  CAS  Google Scholar 

  14. J. Gawronski, K. Gawronska, P. Skowronek, A. Holmen, 1,8-Naphthalimides as stereochemical probes for chiral amines: A study of electronic transitions and exciton coupling, J. Org. Chem. 64, 234–241 (1999).

    Article  CAS  Google Scholar 

  15. K. Nakaya, K. Funabiki, H. Muramatsu, K. Shibata, M. Matsui, N-aryl-1,8-naphmaliinides as highly sensitive fluorescent labeling reagents for carnitine, Dyes and Pigments 43, 235–239 (1999).

    Article  CAS  Google Scholar 

  16. S. Chang, R. E. Utecht, D. E. Lewis, Synthesis and bromination of 4-alkylamino-N-alkyl-1,8- naphthalimides, Dyes and Pigments 43, 83–94 (1999).

    Article  CAS  Google Scholar 

  17. Q. Xuhong, Z. Zhenghua, C. Kongchang, The synthesis, application and prediction of Stokes shift in fluorescent dyes derived from 1,8-naphthalic anhydride, Dyes and Pigments 11, 13–20, (1989).

    Article  Google Scholar 

  18. J. Gawronski, M. Kwit, K. Gawronska, Helicity Induction in a Bichromophore: A sensitive and practical chiroptical method for absolute configuration determination of aliphatic alcohols, Org. Lett, 4, 4185–4188 (2002).

    Article  CAS  Google Scholar 

  19. B. Ramachandram, A. Samanta, Modulation of metal-fluorophore to develop structurally simple fluorescent sensors for transition metal ions, Chem. Commun. 1037–1038 (1997).

    Google Scholar 

  20. A. Demeter, T. Bérces, L. Biczók, V. Wintgens, P. Valat, J. Kossanyi, Comprehensive model of the photophysics of N-phenylnaphthalimides: The role of solvent and rotational relaxation, J. Phys. Chem. 100,2001–2011 (1996).

    Article  CAS  Google Scholar 

  21. R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, K. R. A. S. Sandanayake, Molecular fluorescent signalling with fluor-spacer-receptor systems. Approaches to sensing and switching devices via suprarnolecular photophysics, Chem. Soc. Rev. 187–195 (1992).

    Google Scholar 

  22. L. M. Daffy, A. P. D. de Silva, H. Q. N. Gunaratne, C. Huber, P. L. M. Lynch, T. Werner, O. S. Wolfbeis, Arenedicarboximide Building Blocks for Fluorescent Photoinduced Electron Transfer pH Sensors Applicable with Different Media and Communication Wavelengths, Chem. Eur. J. 4, 1810–1815 (1998).

    Article  CAS  Google Scholar 

  23. J. A. Cowan, J. K. M. Sanders, Pyromellitimide-bridged porphyrins as model photosynthetic systems. 1 Synthesis and steady state fluorescence properties, J. Chem. Soc, Perkin Trans. 1 2435–2437 (1985).

    Article  Google Scholar 

  24. B. M. Aveline, S. Matsugo, R. W. Redmond, Photochemical Mechanisms Responsible for the Versatile Application of Naphthalimides andNaphthaldiimides in Biological Systems, .J. Am. Chem. Soc. 119, 11785–11795(1997).

    Article  CAS  Google Scholar 

  25. A. Samanta, G. Saroja, Steady-state and time-resolved studies on the redox behavior of 1,8-napthalimdes in the excited state, J. Photochem. Photobiol A: Chem. 84, 19–26 (1994).

    Article  CAS  Google Scholar 

  26. I. Garbtchev, Tz. Philipova, P. Meallier, S. Guittoneau, Influence of Substituents on the Spectroscopic and Photochemical Properties of Naphthalimide Derivatives, Dyes and Pigments, 31, 31–34 (1996).

    Article  Google Scholar 

  27. V. Wintgens, P. Valat, J. Kossanyi, A. Demeter, L. Biczok, T. Berces, Spectroscopic properties of aromatic dicarboximides. Part 4. On the modification of the fluorescence and intersystem crossing processes of molecules by electron-donating methoxy groups at different positions. The case of 1,8-naphthalimides, New J. Chem., 20, 1149–1158 (1996).

    CAS  Google Scholar 

  28. A calculated energy barrier of rotation for sensor and sensor-saccharide complex was determined using PC model software (version 6.0). The sensor-saccharide complex displays a higher energy barrier (15.32 kcal/mole) than free sensor (14.41 kcal/mole). Although this difference appears small, the overall strain energy was much higher 140.3 kcal/mol). On this energy difference basis, the rotational energy barrier may prevent phenyl ring rotation.

    Google Scholar 

  29. Y. Dromzée, J. Kossanyi, V. Wintgens, P. Valat, L. Biczok, A. Demeter, T. Berces, Crystal and molecular structure of JV-phenyl substituted 1,2-, 2,3- and 1,8-naphthalimides, Z. Kristallo. 210,760–765 (1995).

    Article  Google Scholar 

  30. A. Weller, Exciplex and radical pairs in photochemical eletron-transfer, Pure andAppl. Chem. 54 1885–1888(1982).

    Article  CAS  Google Scholar 

  31. Gibbs free energy term is divided by ~nF where E values are in units of volts.

    Google Scholar 

  32. The default force field used in PCMODEL(version 8.0) is called MMX and is derived from MM2(QCPE-395, 1977) force field of N. L. Allinger, with the pi-VESCF routines taken from MMP1 (QCPE-318), also by N. L. Allinger.

    Google Scholar 

  33. J.H. Hageman, G.D. Kuehn, Boronic acid matrices for the affinity purification of glycoproteins and enzymes Methods in Molecular Biology, 11,45–71 (1992).

    CAS  Google Scholar 

  34. G.R. Kennedy, M.J. Row, The interaction of sugars with borate: an N.M.R. spectroscopic study Carbohydrate Res., 28, 13–19 (1973)

    Article  CAS  Google Scholar 

  35. G. Wulff, Selective binding to polymers via covalent bonds: The construction of chiral cavities as specific receptor sites, Pure Appl. Chem. 54, 2093–2102 (1982).

    Article  Google Scholar 

  36. T. D. James, K. R. A. S. Sandanayake, R. Iguchi, S. Shinkai, Novel photoinduced electron-transfer sensors based on the interaction of boronic acid and amine, J. Am. Chem. Soc. 117, 8982–8987 (1995).

    Article  CAS  Google Scholar 

  37. K. R. A. S. Sandanayake, S.; Shinkai, Two-dimensional photoinduced electron-transfer (PET) fluorescence sensor for saccharides Chem. Lett. 503–504 (1995).

    Google Scholar 

  38. W. Yang, H. He, D. G. Drueckhammer, Computer-guided design in molecular recognition design and synthesis of a glucopyranose receptor, Angew. Chem. Int. Ed. Engl. 40, 1714–1717 (2001).

    Article  CAS  Google Scholar 

  39. V. V. Kamati, X. Gao, S. Gao, W. Yang, W. Ni, S. Sankar, B. Wang, A glucose-selective fluorescence sensor based on boronic acid-diol recomition, Bioorg. Med. Chem. Lett. 12, 3373–3377 (2003).

    Google Scholar 

  40. N. DiCesare, D. P. Adhikari, J. J. Heynekamp, M. D. Heagy, J. R. Lakowicz, Spectral properties of fluorophores combining the boronic acid group with electron donor or withdrawing groups. Implication in the development of fluorescent probes for saccharides, J. Fluor. 12, 147–154 (2002).

    Article  CAS  Google Scholar 

  41. M. P. Groziak, A. D. Ganguly, P. D. Robinson, Boron Heterocycles Bearing a Peripheral Resemblence to Naturally-occuring Purines. Design, Synthesis, Structures, and Properties, J. Am. Chem. Soc. 116, 7597–7605 (1994).

    Article  CAS  Google Scholar 

  42. H. Gunther, NMR Spectroscopy; Georg Thieme Verlag: Stuttgart, 1987.

    Google Scholar 

  43. H. Noth, B. Wrackenmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, Vol 14; Springer: Berlin, 1978.

    Book  Google Scholar 

  44. M. B. Francis, N. S. Finney, E. R. Jacobsen, Combinatorial approach to the discovery of novel coordination complexes, J. Am. Chem. Soc. 118, 8983–8984 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heagy, M.D. (2004). Arenedicarboximides as Versatile Building Blocks for Fluorescent Photoinduced Electron Transfer Saccharide Sensors. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2004. Reviews in Fluorescence 2004, vol 2004. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48672-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48672-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0992-6

  • Online ISBN: 978-0-306-48672-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics