Abstract
Polyurethanes are the most commonly used materials in the production of blood contacting devices such as heart valves or artificial veins and arteries. They comprise a large family of materials with the only common characteristic of the presence of urethane linkages along the large molecular chains. In general urethane linkages form by the reaction of isocyanates and alcohols. During the preparation and the curing processes of polyurethanes, besides the formation of urethane linkages, many other reactions take place and lead to formation of various bonds such as allophanate, biuret, acylurea or isocyanurate and these bonds may lead to further branching or crosslinking affecting the whole physical, chemical and mechanical properties as well as the biocompatibilities of the resulting polymers1,2.
Keywords
- Hard Segment
- Ultrahigh Molecular Weight Polyethylene
- Soft Segment
- Chain Extender
- Blood Compatibility
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Hasirci, N., 1991, Polyurethanes. In High Performance Biomaterials: Comprehensive Guide to Medical and Pharmaceutical Application (M. Szycher, ed), Technomic Pub.Co., Lancaster, pp.71–91.
Hasirci, N., 1994, Polyurethanes as biomedical materials. In Surface Properties of Biomaterials, (R. West and G. Batts, eds), Butterworth- Heineman Ltd., Oxford, pp.81–90.
Bayer, O., Muller, E., Peterson, S., Piepenbrink, H.F., and Windemuth, E., 1950, Polyurethanes VI. New Highly Elastic Synthetics, Vulcollans, Rubber Chem. Technol., 23: 81
Bikales, M.N., 1969. Polyurethanes. In Encyclopedia of Polymer Science and Technology, Interscience Publishers John Wiley and Son Inc., New York, 11: 507.
Mirkovitch, V., Akutsu, T., and Kolff, W.J., 1962, Polyurethane Aortas In Dogs-Three-Year Results. Trans .Am. Soc.Artiiflntern. Organs, 8: 79.
Sharp, W.V., Gardener, D.L., and Anderson, G.J., 1966, A Bioelectric Polyurethane Elastomer for Intravascular Replacement. Trans.Am.Soc.Artiif.Intern.Organs, 12: 1979.
Szycher, M., Poirier, V.L., and Dempsey, D.J., 1983, Development of an aliphatic biomedical-grade polyurethane elastomer. J.Elast.Plast., 15: 81.
Szycher, M., Poirier, V.L., and Dempsey, D.J., 1983, Development and Testing of Melt-Processable Aliphatic Polyurethane Elastomers. Trans.Soc.Biomater., 6: 49.
Ulubayram, K. and Hasirci, N., 1991, Polyurethanes: Chemistry and Properties. Proceedings of Second Mediterranean School on Science and Technology of Advanced Polymer -Based Materials. pp.1–4.
Ulubayram, K. and Hasirci, N., 1995, Preparation of Polyurethane Elastomer For Biomedical Applications. In Proceedings of the Second National Symposium on Biomedical Science and Technology (V.Hasirci, ed.), pp.65–66.
Kutay, S., Tincer, T. and Hasirci N., 1990, Polyurethanes as Biomedical Materials. British Polymer Journal, 23: 267–272.
Garrett, J.T., Runt, J., and Lin, J.S., 2000, Microphase separation of segmented poly(urethane urea) block copolymers. Macromolecules 33(17): 6353–6359.
Nojima, K., Sanui, K., Ogata, N., Yui, N., Kataoka, K., and Sakurai, Y., 1987, Material characterization of segmented polyether poly(urethane-urea-amide)s and its implication in blood compatibility. Polymer, 28: 1017–1024.
Takahara, A., Tashita, J.I., Kajiyama, T., Takayanagi, M., and MacKnight, W.J., 1985, Microphase separated structure, surface composition and blood compatibility of segmented poly(urethaneureas) with various soft segment components. Polymer 26: 987–996.
Takahara, A., Okkema, A.Z., Wabers, H., and Cooper, S.L., 1991, Effect of hydrophilic soft segment side chains on the surface properties and blood compatibility of segmented poly(urethaneureas). JBiomed Mater Res, 25: 1095–1118.
Lelah, M.D., Grasel, T.G., Pierce, J.A., and Cooper, S.L., 1986, Ex vivo interactions and surface property relationships of polyetherurethanes. JBiomed. Mater. Res., 20: 433–468.
Hasirci, N., 1993, Synthesis of Polyurethane Elastomers for Biomedical Use. In Ohio Science Workbook- Polymers (M.R. Steward, ed.) The Ohio Academy of Sci., Columbus, Ohio, USA, pp. 38–41.
Boretos, J.W., and Pierce, W.S., 1968, A Polyether Polymer. J. Biomed. Mat. Res. 2: 121.
Boretos, J.W., 1973, Concise Guide to Biomedical Polymers, Their Design Fabrication and Molding, Charles C. Thomas-Publisher, Springfield, IL, pp.10.
Lyman, D.J., Loo, B.H., 1967, New Synthetic Membranes for Dialysis IV- Copolyether Urethane Membrane Systems. J.Biomed.Mat.Res., 1: 17–26.
Nylias, E., 1970, Develpoment of Blood Compatible Elastomers Theory, Practice and In-Vivo Performance. 23 rd Conference on Engineering in Medicine and Biology, 12: 147.
Lelah, M.D., Lambrecht, L.K., Young, B.R., and Cooper, S.L., 1983, Physicochemical characterization and in vivo blood tolerability of cast and extruded Biomer. J. Biomed. Mater. Res., 17: 1–22.
Hanson, S.R., Harker, L.A., Ratner, B.D., and Hoffman, A.S., 1980, In vivo evaluation of artificial surfaces with a nonhuman primate model of arterial thrombosis, J. Lab. Clin. Med., 95(2): 289–296.
Szycher, M., and Poirier, V.L., 1984, Polyurethanes in Implantable Devices. Plastic Technology, pp.45.
Bouchemal, K., Briançon, S., Perrier, E., Fessi, H., Bonnet, I., and Zydowicz, N., 2004, Synthesis and characterization of polyurethane and poly(ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification, Int. J. Pharmaceutics, 269(1):89–100
Buma, P., Ramrattan, N.N., van Tienen T.G. and Veth R.P.H., 2004, Tissue engineering of the meniscus, Biomaterials, 25(9), 1523–1532.
Shukla, P.G., Kalidhass, B., Shah, A., and Palaskar, D.V., 2002, Preparation and characterization of microcapsules of water soluble pesticide monocrotophos using polyurethane as carrier material. J Microencapsulation, 19(3): 293–304.
Szycher, M., and Poirier, V.L., 1984, Polyurethanes in Implantable Devices. Plastic Technology, pp.45.
Huang, J.C., and Jennings, E.M., 2004, The effect of temperature on controlled release of heparin from polyurethane and ethylene vinyl acetate copolymer. Int. J. Polym. Mater., 53: 69–78.
Han, D.K., Park, K.D., Ahn, K., Jeong, S.Y., and Kim, Y.H., 1989, Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes. J.Biomed. Mater. Res. 23: 87–104.
Weerwind, P.W., van der Veen, F.H., Lindhout, T., de Jong, D.S., and Calahan, F.T., 1998, Ex vivo testing of heparin-coated extracorporeal circuits: Bovine experiments. Int. J.Artiif. Organs, 21: 291–298.
Marois, Y., Chakfe, N., Guidoin, R., Duhamel, R.C., Roy, R., Marois, M., King, M.W., and Douville, Y., 1996, An albumin-coated polyester arterial graft: in vivo assessment of biocompatibility and healing characteristics. Biomaterials, 17: 3–14.
DeQueiroz, A.A., Barrak, E.R., Gil, H.A., and Higa, O.Z., 1997, Surface studies of albumin immobilized onto PE and PVC films. J.Biomater Sci Polym Ed, 8: 667–681.
Seiferd, B., Romanuk, P., and Groth, T., 1997, Covalent immobilization of hirudin improves the haemocompatibility of polylactide-polyglycokide in vitro. Biomaterials, 18: 1495–1502.
Bos, G.W., Scharenborg, N.M., Poot, A.A., Engbers, G.H., Beugeling, T., van Aken, W.G., and Feijen, J., 1999, Blood compatibility of surfaces with immobilized albumin-heparin conjugate and effect of endothelial cell seeding on platelet adhesion. J. Biomed. Mater. Res., 47: 279–291.
Yoda, R., 1998, Elastomers for biomedical applications, J.Biomater. Sci. Polym. Ed., 9: 561–626.
Pasic, M., Muller Glauser, W., von Segesser, L., Odermatt, B., Lachat, M., and Turina, M., 1996, Endothelial cell seeding improves patency of synthetic vascular grafts: manual versus automatized method. Eur. J.Cardio Thorac Surg., 10: 372–379.
Ryu, G.H., Han, D.K., Park, S., Kim, M., Kim, Y.H., and Min, B., 1995, Surface characteristics and properties of lumbrokinase immobilized polyurethane. J.Biomed Mater Res, 29: 403–409.
Ratner, B.D., 1998, Molecular design strategies for biomaterials that heal. Macromol Symposia, 130: 327–335.
Morra, M., Occhiello, E., and Garbassi, F., 1993, Surface modification of blood contacting polymers by poly(ethyleneoxide). Clin Mater 14: 255–265.
Han, D.K., Jeong, S.Y., and Kim, Y.H., 1989, Evaluation of blood compatibility of PEO grafted and heparin immobilized polyurethanes, 1 Biomed Mater Res: Appl Biomater, 23 (A2): 211–228.
Wang, D.A., Ji, J., Gao, C.Y., Yu, G.H., and Feng, L.X., 2001, Surface coating of stearyl poly(ethylene oxide) coupling-polymer on polyurethane guiding catheters with poly(ether urethane) film-building additive for biomedical applications. Biomaterials, 22: 1549–1562.
Chen, K.Y., Kuo, J.F., and Chen, C.Y., 2000, Synthesis characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes. Biomaterials, 21: 161–171.
Ito, Y., Iguchi, Y., Kashiwagi, T., and Imanishi, Y., 1991, Synthesis and nonthrombogeneity of polyetherurethaneurea film grafted with poly(sodium vinyl sulfonate). J. Biomed. Mater. Res., 25: 1347–1361.
Okkema, A.Z., Yu, X.H., and Cooper, S.L., 1991, Physical and blood contacting characteristics of propyl sulfonate grafted Biomer. Biomaterials, 12: 3–12.
Okkema, A.Z., and Cooper, S.L., 1991, Effect of carboxylated and/or sulfanate ion incorparation on the physical and blood-contacting properties of a polyetherurethane. Biomaterials, 12: 668–676.
Lee, J.H., Khang, G., Lee, J.W., and Lee, H.B., 1998, Platelet adhesion onto chargeable functional group gradient surfaces. J. Biomed. Mater. Res., 40: 180–186.
Abraham, G.A., Queiroz, A. A., Roman, J.S., 2002, Immobilization of a nonsteroiddal antiinflammatory drug onto commercial segmented polyurethane surface to improve haemocompatibility properties. Biomaterials, 23: 1625–1638.
Morimoto, N., Iwasaki, Y., Nakabayashi, N., and Ishihara, K., 2002, Physical properties and blood compatibility of surface-modified segmented polyurethane by semi-interpenetrating polymer networks with a phospholipid polymer. Biomaterials, 23(24): 4881–4887.
Ishihara, K., Fujita, H., Yoneyama, T., and Iwasaki, Y., 2000, Antithrombogenic polymer alloy composed of 2-methacryloyloxyethyl phosphorylcholine polymer and segmented polyurethane. J. Biomater. Sci. Polym. Edn., 11(11): 1183–1195.
Yoneyama, T., Sugihara, K., Ishiara, K., Iwasaki, Y., and Nakabayashi, N., 2002, The vascular prosthesis without pseudointima prepared by antithrombogenic phospholipid polymer. Biomaterials, 23: 1455–1459.
Korematsu, A., Takemoto, Y., Nakaya, T., and Inoue, H., 2002, Synthesis, characterization and platelet adhesion of segmented polyurethanes grafted phospholipid analogous vinyl monomer on surface. Biomaterials, 23: 263–271.
Zhang, J., Yuan, J., Yuan, Y., Zang, X., Shen, J., and Lin, S., 2003, Platelet adhesive resistance of segmented polyurethane film surface-grafted with vinyl benzyl sulfo monomer of ammonium zwitterions. Biomaterials, 24: 4223–4231.
Smith, D.J., Chakravarthy, D., Pulfer, S., Simmons, M.L., Hrabie, J.A., Citro, M.L., Saavedra, J.E., Davies, K.M., Hutsell, T.C., Mooradian, D.L., Hanson, S.R., and Keefer, L.K., 1996, Nitric oxide releasing polymers containing [N(O)NO] group. J. Med. Chem., 39:1148–1156.
Movery, K.A., Schoenfisch, M.H., Saavedra, J.E., Keefer, L.K., and Meyerhoff, M.E., 2000, Preparation and characterization of hydrophobic polymeric films that are thromboresistant via nitric oxide release. Biomaterials, 21:9–21.
Duan, X., and Lewis, R.S., 2002, Improved haemocompatibility of cystein-modified polymers via endogenous nitric oxide. Biomaterials, 23: 1197–1203.
Logeart-Avramoglou, D., and Jozefonvicz, J., 1999, Carboxymethyl benzylamide sulfonate dextrans [CMDBS], a family of biospeciflc polymers endowed with numerous biological properties: a review. J. Biomed. Mater. Res. Appl. Biomater., 48(4):578–590.
Roman, S.J., Bujan, J., Bellon, J.M., Gallardo, A., Escudero, M.C., Jorge, E., Haro, J., Alvarez, L., Castillo, J.L., 1996, Experimental study of the antithrombogenic behavior of Dacron vascular grafts coated with hydrophilic acrylic copolymers bearing salicilic acid residues. J. Biomed. Mater. Res., 32: 19–27.
Zhu, Y., Gao, C, He, T., and Shen J., 2004, Endothelium regeneration on luminal surface of polyurethane vascular scaffold medified with diamine and covalently grafted with gelatin, Biomaterials, 25:423–430.
Wang, Z.F., Wang, B., Yang, Y.R. and Hu C.P., 2003, Correlations between gas permeation and free-volume hole properties of polyurethane membranes, European Polymer J., 39(12):2345–2349.
Liu, Q., Runt, J., Felder, G., Rosenberg, G., Snyder, A.J., Weiss, W.J., Lewis, J., and Werley, T., 2000, In vivo and in vitro stability of modified poly(urethaneurea) blood sacs. J. Biomat. Appl.,14(4): 349–366.
Weisberg, D.M., Gordon, B., Rosenberg, G., Snyder, A.J., Benesi, A., Runt, J., 2000, Synthesis and characterization of amphiphilic poly(urethaneurea)-comb-polyisobutylene copolymers. Macromolecules, 33 (12): 4380–4389.
Xu, R.J., Manias, E., Snyder, A.J., Runt, J., 2001, New biomedical poly(urethane urea) -Layered silicate nanocomposites. Macromolecules, 34 (2): 337–339.
Ulubayram, K., and Hasirci, N., 1992, Polyurethanes: Effect of Chemical Composition on Mechanical Properties and Oxygen Permeability. Polymer, 33(10): 2084–2088.
Park, H.B., Kim C.K., and Lee Y.M., Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes, J. Membrane Science, 204: 257–269.
Zdrahala, R.J., and Zdrahala, I.J., 1999, Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J. Biomater. Appl. y 14:67–90.
Kim, Y.H., Han, D.K., Park, D.K., and Kim, S.H., 2003, Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept, Biomaterials, 24(l3):2213–2223.
van Blitterswijk, C.A., van der Brink J., Leenders, H., Hessling, S.C., and Bakker, D., 1991, Polyactive: a bone bonding polymer effect of PEO/PBT proportion, Trans Soc Biomater, 14:11
Tang, Z.G., Teoh, S.H., McFarlane, W., Poole-Warren, L.A., and Umezu, M., 2002, In vitro calcification of UHMWPE/PU composite membrane, Materials Sci. Eng., C-20:149–152.
Tang, Z.G., Teoh, S.H., McFarlane, W., Warren, L.P., and Umezu, M., 2003, Compression- induced changes on physical structures and calcification of the aromatic poly ether polyurethane composite. J. Biomater. Sci. Polym. Ed., 14(10): 1117–1133.
Yang, M., Zhang, Z., Hahn, C, King, M.W., and Guidoin, R., 1999, Assessing the resistance to calcification of polyurethane membranes used in the manufacture of ventricles for a totally implantable artificial heart. J. Biomed. Mater. Res., 48(5): 648–659.
Miao, X., Hu, Y., Liu, J., and Wong, A.P., Porous calcium phosphate ceramics prepared by coating polyurethane foams with calcium phosphate cements, Materials Letters, 58:397–402.
Hasirci, N., 1987, Surface modification of charcoal by glow-discharge: the effect on blood ceils. J. Appl. Polym. Sci., 34: 2457–2468.
Kayirhan, N., Denizli, A., Hasirci, N., 2001, Adsorption of Blood Proteins on Glow-discharge Modified Polyurethane Membranes. J. Appl. Polym. Sci., 81: 1322–1332.
Hasirci, N., and Burke, A., 1987, A novel polyurethane film for biomedical use. J. Bioactive and Compatible Polymers, 2: 131–141.
Burke, A., Hasirci, V.N. and Hasirci, N., 1988, Polyurethane Membranes, J. Bioactive and Compatible Polymers, 3: 232–242.
Ulubayram, K., and Hasirci, N., 1991, Polyurethanes: Chemistry and Properties, Procedings of Second Mediterranean School on Science and Technology of Advanced Polymer -Based Materials, pp: 1–4.
Ulubayram, K., and Hasirci, N., 1993, Properties of plasma modified polyurethane surfaces. J. Colloids and Surfaces: Biointeractions, 1: 261–269.
Ozdemir, Y., and Hasirci, N., 2002, Surface modification of polyurethane membranes. Technology and Health Care, 10: 316–319.
Ozdemir, Y., Serbetci K., and Hasirci, N., 2002, Oxygen Plasma Modification of Polyurethane Membranes. J. Mat. Sci, Materials in Medicine, JMS: MIM, 13:1147–1152.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer Science+Business Media New York
About this paper
Cite this paper
Burke, A., Hasirci, N. (2004). Polyurethanes in Biomedical Applications. In: Hasirci, N., Hasirci, V. (eds) Biomaterials. Advances in Experimental Medicine and Biology, vol 553. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48584-8_7
Download citation
DOI: https://doi.org/10.1007/978-0-306-48584-8_7
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4757-0988-9
Online ISBN: 978-0-306-48584-8
eBook Packages: Springer Book Archive