Skip to main content

Bioapplication Oriented Polymers. Micro- and Nanoparticles for Drug Delivery Systems

  • Conference paper
  • 1007 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 553))

Abstract

Micro- and nanoparticles called by Paul Ehrlich “magic bullets” are one answer to the problem of drug delivery system and drug action specificity. Microparticles are homogeneous particles or monolitic microcapsules, usually spherical, with dimensions ranging between 10-3–10-6 m. Nanoparticles and nanocapsules are defined in the same terms, with the difference that their size is situated in the range of nanometers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Potts, J. E., Cledining, R.A., Ackart, W. B., and Niegisch, W.D. 1973, Biodegradability of synthetic polymers. Polym. Sci. Technol. 3: 61.

    Google Scholar 

  2. Huang, S. 1985, Biodegradable polymers. In Encyclopedia of Polymer Science and Engineering (H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, eds.), John Wiley and Sons, New York, pp. 220–243.

    Google Scholar 

  3. Chandra, R., and Rustigi, R. 1998, Biodegradable polymers. Prog. Polym. Sci. 23: 1273–1335.

    Article  Google Scholar 

  4. Pitt, G., Chasalow, F. I., Hibionada, Y. N., Klimas, D. N., and Schimler, A. 1981, Aliphatic polyesters. I. The degradation of poly(lactone) in vivo. J. Appl. Polym. Sci. 26: 3779–3787.

    Article  Google Scholar 

  5. Pitt, C. G. 1990, Poly(ε-caprolactone) and its copolymers. In Biodegradable Polymers as Drug Delivery Systems (M. Chasin, and R. Langer, eds.), Marcel Dekker, New York, pp. 71–120.

    Google Scholar 

  6. Engelberg, I., and Kohn, J. 1991, Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 12: 292–304.

    Article  Google Scholar 

  7. Domb, J. A., Kumar N., Sheskin, T., Bentolila, A., Slager J., and Teomim, D. 2002, Biodegradable polymers as drug delivery systems. In Polymeric Biomaterials (S. Dumitriu, ed.), Marcel Dekker, New York, Basel, pp. 91–121.

    Google Scholar 

  8. Le Roy Boehm, A.-L., Zerrouk, R., and Fessi, H. 2000, Poly(ε-caprolactone) nanoparticles containing a poorly soluble pesticide: formulation and stability study, J. Microencapsulation 17: 195–205.

    Article  Google Scholar 

  9. Alleman, E., Gurny, R., and Doelker, E. 1993, Drug-loaded nanoparticles preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm. 39: 173–191.

    Google Scholar 

  10. Jagur-Grodzinski, J. 1999, Biomedical application of functional polymers. React. Functional Polym. 39: 99–138.

    Article  Google Scholar 

  11. Kim, S. Y., Shin, I. G., Lee, Y. M., Cho, C. S., and Sung, Y. K. 1998, Methoxy poly(ethylene glycol) and ε-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J. Contr. Release 51: 13–22.

    Article  Google Scholar 

  12. Kim, S. Y., Lee, Y. M., Shin, H. J., and Kang, J. S. 2001, Indomethacin-loaded methoxy poly(ethylene glycol)/poly(ε-caprolactone) diblock copolymeric nanospheres: pharmacokinetic characteristics of indomethacin in the normal Sprague-Dawley rats. Biomaterials 22: 2049–2056.

    Article  Google Scholar 

  13. Kim, S. Y., Ha, J. C., and Lee, Y. M. 2000, Polyethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(ε-caprolactone) (PCL) amphiphilic block copolymeric nanospheres. II. Thermoresponsive drug release behaviour. J. Contr. Release 65: 345–358.

    Article  Google Scholar 

  14. Yilgor, I., and McGrath, J. E. 1988, Siloxane containing copolymers. Adv. Polym. Sci. 86: 1–57.

    Article  Google Scholar 

  15. Harabagiu, V., Pinteala, M., and Simionescu B. C. 2003, Blends and networks containing silicon-based polymers. In Handbook of Polymer Blends and Composites (A. K. Kulshreshtha, and C. Vasile, eds.) Rappra Technology Ltd., Shawbury, Vol. 4B, pp. 525–534.

    Google Scholar 

  16. Harabagiu, V., Pinteala, M., Cotzur, C., and Simionescu, B. C. 1996, Functional polysiloxanes. In The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications (J. C. Salamone, ed.), CRC Press, Boca Raton, Fl., Vol. 4, pp 2661–2667.

    Google Scholar 

  17. Simionescu, B. C., Harabagiu, V., and Simionescu, C. I. 1996, Siloxane containing polymers. In The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications (J. C. Salamone, ed.), CRC Press: Boca Raton, Fl., Vol. 10, pp. 7751–7759.

    Google Scholar 

  18. El-Zaim, H. S., and Heggers, J. P. 2002, Silicones for pharmaceutical and biomedical applications. In Polymeric Biomaterials (S. Dumitriu, ed.), Marcel Dekker, New York, Baser!, pp. 79–90.

    Google Scholar 

  19. Frisch, E. E. 1983, Technology of silicones in biomedical applications, In Biomaterials in Reconstructive Surgery (L. H. Rubin, ed.), C. V. Mosby, St. Louis, pp. 73–90.

    Google Scholar 

  20. Aoyagi, T., and Nagase, Y., 1995, Silicone-based polymers. In Percutaneous penetration enhancers (E. Smith, and H. Maibach, eds.) CRC Press, New York pp. 267.

    Google Scholar 

  21. Perrin, D. E., and English, J. P. 1997, Polycaprolactone. In Handbook of Biodegradable Polymers (A. J. Domb, J. Kost, and D. N. Weiseman, eds.), Harwood Academic Publishers, Amsterdam, pp. 63–77.

    Google Scholar 

  22. Yilgor, I., Steckle, Jr. W. P., Yilgor, E., Freelin, R. G., and Riffle, J. S. 1989, Novel triblock siloxane copolymers: synthesis, characterization and their use as surface modifying additives. J. Polym. Sci.: Part A: Polym. Chem. 27: 3673–3690.

    Article  Google Scholar 

  23. Iojoiu, C., Hamaide, T., Harabagiu, V., and Simionescu, B. C. 2004, Modified poly(ε-caprolactone)s and their use for drug encapsulating nanoparticles. J. Polym. Sci.: Part A: Polym. Chem. 42: 689–700.

    Article  Google Scholar 

  24. Lovinger, A. J., Han, B. J., Frank, J., Padden, Jr. J., and Mirau, P. A. 1993, Morphology and properties of polycaprolactone-polydimethylsiloxane-polycaprolactone block copolymers. J. Polym. Sci.: Part B: Polym. Phys. 31, 115–123.

    Article  Google Scholar 

  25. Erbil, H. Y., Yasar, B., Süzer, S., and Baysal, B. M. 1997, Surface characterization of the hydroxy-terminated poly(c-caprolactone)/polydimethylsiloxane triblock copolymers by electron spectroscopy for chemical analysis and contact angle measurements. Langmuir 13: 5484–5493.

    Article  Google Scholar 

  26. Karal, O., Hamurcu, E. E. G., and Baysal, B. M. 1998, Effect of a triblock PCL-PDMS-PCL copolymer on the properties of immiscible poly(vinyl chloride)/poly(2-ethylhexyl acrylate) blends. Macromol. Chem. Phys. 199: 2699–2708.

    Article  Google Scholar 

  27. Kayaman-Apohan, N., Karal-Yilmaz, O., Baysal, K., and Baysal, B. M. 2001, Poly(DL-lactic acid)/triblock PCL-PDMS-PCL copolymers: synthesis, characterization and demonstration of their cell growth effect in vitro. Polymer 42: 4109–4116.

    Article  Google Scholar 

  28. Tziampazis, E., Kohn, J., and Moghe, P. V. 2000, PEG-variant biomaterials as selectively adhesive protein templates: model surface for controlled cell adhesion and migration. Biomaterials 21: 511–520.

    Article  Google Scholar 

  29. West, J. L., and Hubbell, J. A. 1995, Comparison of covalently and physically cross-linked polyethylene glycol-based hydrogels for the prevention of postoperative adhesions in rat model. Biomaterials 16: 1153–1156.

    Article  Google Scholar 

  30. Peppas, L. B., and Peppas, N. A. 1991, Equilibrium swelling behavior of pH-sensitive hydrogels. Chem. Eng. Sci. 46: 715–722.

    Article  Google Scholar 

  31. Yildiz, B., Isik, B., and Kis, M. 2002, Thermoresponsive poly(N-isopropylacrylamide-co-acrylamide-co-hydroxyethyl methacrylate) hydrogel. Reactive & Functional Polymers 52: 3–10.

    Article  Google Scholar 

  32. Park, T. G., and Hoffman, A.S. 1992, Synthesis and characterization of pH- and /or temperature —sensitive hydrogels. J. Appl. Polym. Sci. 46: 659–671.

    Article  Google Scholar 

  33. Gutowska, A., Bark, J. S., Kwon, I. C., Bae, Y. H., Cha, Y. and Kim, S.W. 1997, Squeezing hydrogels for controlled oral drug delivery. J. Contr. Release 48: 141–148.

    Article  Google Scholar 

  34. Sawahata, K., Hara, M., Yasunaga, H., and Osada, Y. 1990, Electrically controlled drug delivery system using polyelectrolyte gels. J. Contr. Release 14: 253–262.

    Article  Google Scholar 

  35. Park, T.G. 1999, Temperature modulated protein release from pH/temperature-sensitive hydrogels. Biomaterials 20: 517–521.

    Article  Google Scholar 

  36. Hirokawa, Y., and Tanaka, T. 1984, Volume phase transition in a nonionic gel, J. Chem. Phys. 81: 6379–6380.

    Article  Google Scholar 

  37. Tanaka, T., Sato, E., Hirokawa, Y., Hirotsu, S., and Peetermans, J. 1985, Critical kinetics of volume phase transition of gels, Phys. Rev. Lett. 55: 2455–2458.

    Article  Google Scholar 

  38. Yildiz, B., Isik, B., and Kis, M. 2002, Thermoresponsive poly(N-isopropylacrylamide-co-acrylamide-co-2-hydrohyethyl methacrylate) hydrogels, Reactive & Functional Polymers 52: 3–10.

    Article  Google Scholar 

  39. Feil, H., Bae, Y.H., Feijen, J., and Kim, S.W. 1993, Effect of comonomer hydrophylicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers, Macromolecules 26: 2496–2500.

    Article  Google Scholar 

  40. Fundueanu, G., Esposito, E., Mihai, D., Carpov, A., Desbrieres, J., Rinaudo, M., Nastruzzi, C. 1998, Preparation and characterisation of Ca-alginate microspheres by a new modification method, Int. J. Pharm. 170: 11–21.

    Article  Google Scholar 

  41. Fundueanu, G., Constantin, M., Mihai, D., Bortolotti, F., Cortesi, R., Ascenzi, P., Menegatti, E. 2003, Pullulan-cyclodextrin microspheres. A chromatographic approach for the evaluation of the drug-cyclodextrin interactions and the determination of the drug release profiles, J. Chromatography B 791: 407–419.

    Article  Google Scholar 

  42. Constantin, M., Fundueanu, G., Cortesi, R., Esposito, E., Nastruzzi, C. 2003, Aminated Polysaccharide Microspheres as DNA Delivery Systems, Drug Delivery 10: 1–11.

    Article  Google Scholar 

  43. Fundueanu, G., Constantin, M., Dalpiaz, A., Bortolotti, F., Cortesi, R., Ascenzi, P., Menegatti, E. 2004, Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesilate (Foy®) in allergic rhinitis treatment, Biomaterials 25; 159–170.

    Article  Google Scholar 

  44. Fundueanu, G., Nastruzzi, C., Carpov, A., Desbrieres, J., and Rinaudo, M. 1999, Physico-chemical characterization of Ca-alginate microspheres produced with different methods, Biomaterials 20: 1427–1435.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Harabagiu, V., Fundueanu, G., Pinteala, M., Constantin, M., Hamaide, T. (2004). Bioapplication Oriented Polymers. Micro- and Nanoparticles for Drug Delivery Systems. In: Hasirci, N., Hasirci, V. (eds) Biomaterials. Advances in Experimental Medicine and Biology, vol 553. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48584-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48584-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0988-9

  • Online ISBN: 978-0-306-48584-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics