Skip to main content

Stem Cells and Tissue Engineering

  • Conference paper
Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 553))

Abstract

Tissue engineering has emerged as an alternative approach for the treatment of the loss or malfunction of a tissue or organ with the advantage of not having the limitations of the current orthodox therapies. Basically, the concept of this technology has been the transplantation of constructs consisting of cells grown ex vivo within predesigned scaffolds made up of exogenous three-dimensional extracellular matrices (ECMs). The scaffolds employed to guide the functional tissue development, eventually break down leaving only the cells and the stroma that they produce in the body1–3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langer, R., and Vacanti, J.P., 1993, Tissue engineering. Science 260, 920–926.

    Article  Google Scholar 

  2. Lanza, R.P., Langer, R, and Chick, W.L., (Eds.), 1997, Principles of Tissue Engineering, Academic Press, San Diego and London, 808 pages.

    Google Scholar 

  3. Elcin, Y.M., (Ed.), 2003, Tissue Engineering, Stem Cells and Gene Therapies, AEMB Series, Vol. 534, Kluwer Academic-Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 350 pages.

    Google Scholar 

  4. Pittenger, M.F., et al., 1999, Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

    Article  Google Scholar 

  5. Wobus, A.M., 2001, Potential of embryonic stem cells. Mol Asp Med 22, 149–164.

    Article  Google Scholar 

  6. Krause, D.S., 2002, Plasticity of marrow-derived stem cells. Gene Therapy 9, 754–758.

    Article  Google Scholar 

  7. Rao, M.S., and Mattson, M.P., 2001, Stem cells and aging: expanding the possibilities. Mech Age Dev 122, 713–734.

    Article  Google Scholar 

  8. Evans, M.J., and Kaufman, M., 1981, Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

    Article  Google Scholar 

  9. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M., 1998, Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  Google Scholar 

  10. Reubinoff, B.E., Pera, M.F., Fong, C., Trounson, A., and Bongso, A., 2000, Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology 18, 399–404.

    Article  Google Scholar 

  11. McWhir, J., Thomson, A., and Sottile, V., 2003, Tissue Engineering, Stem Cells and Gene Therapies, (Y.M. Elcin, Ed.), AEMB Series, Vol. 534, Kluwer Academic-Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, pp. 11–26.

    Book  Google Scholar 

  12. Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., and Carpenter, M., 2001, Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology 19, 971–974.

    Article  Google Scholar 

  13. Lebkowski, J.S., Gold, J., Xu, C., Funk, W., Chiu, C., and Carpenter, M., 2001, Human embryonic stem cells: culture differentiation, and genetic modification for regenerative medicine applications. The Cancer 7 (suppl.2), S83–S93.

    Google Scholar 

  14. Richards, M., Fong, C., Chan, W., Wong, P., and Bongso, A., 2002, Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nature Biotechnology 20 (9), 933–936.

    Article  Google Scholar 

  15. Zhang S., Wernig, M., Duncan, I.D., Brustle, O., and Thomson, J.A., 2001, In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology 19, 1129–1133.

    Article  Google Scholar 

  16. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amir, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein L., 2002, Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108, 407–414.

    Google Scholar 

  17. Elcin, A.E., et al., 2002, Formation of vessel-like structures from human embryonic stem cells in culture: preliminary findings. Proc BIOMED 2002, Antalya, Turkey, P14, 049.

    Google Scholar 

  18. Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J., and Langer, R., 2002, Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99 (7), 4391–4396.

    Article  Google Scholar 

  19. Rambhatla, L., Chui, C-P., Kundu, P., Peng, Y., and Carpenter, M.K., 2003, Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 12 (1), 1–11.

    Article  Google Scholar 

  20. Rathjen, P.D., Lake, J., Whyatt, L.M., Bettess, M.D., and Rathjen, J., 1998, Properties and uses of embryonic stem cells: prospects for application to human biology and gene therapy. Reprod Fertil Dev 10, 31–47.

    Article  Google Scholar 

  21. Gage, F.H., 1998, Cell therapy. Nature 392, 18–24.

    Google Scholar 

  22. Lanza, R.P., Cibelli, J.B., and West, M.D., 1999, Human therapeutic cloning. Nature Med 5, 975–976.

    Article  Google Scholar 

  23. Fuchs, E., and Segre, J.A., 2000, Stem cells: a new lease on life. Cell 100, 143–155.

    Article  Google Scholar 

  24. Sherley, J.L., 2002, Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture. Stem Cells 20 (6). 561–572.

    Article  Google Scholar 

  25. Loeffler, M., and Potten, C.S., Stem cells and cellular pedigrees — a conceptual introduction. In Stem Cells, C.S. Potten, Ed. San Diego, Harcourt Brace & Co. 1997, pp.1–28.

    Chapter  Google Scholar 

  26. Clark, D., and Frisen, J., 2001, Differentiation potential of adult stem cells. Curr Opin Genet & Devel 11, 575–580.

    Article  Google Scholar 

  27. Rambhatla, L., et al., 2001, Cellular senescence: Ex vivo p53-dependent asymmetric cell kinetics. JBiomed Biotech 1, 28–37.

    Article  Google Scholar 

  28. Bianco, P., and Robey, P.G., 2001, Stem cells in tissue engineering. Nature 414, 118–121.

    Article  Google Scholar 

  29. Kocher, A.A., et al., 2001, Neovascularization of ischemic myocardium by human bonemarrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodelling and improves cardiac function. Nature Med 7 430–436.

    Article  Google Scholar 

  30. Ferrari, G., et al., 1998, Muscle regeneration by bone-marrow-derived myogenic progenitors. Science 279, 1528–1530.

    Article  Google Scholar 

  31. Orlic, D., et al., 2001, Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705.

    Article  Google Scholar 

  32. Wakitani, S., Saito, T., and Caplan, A.I., 1995, Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18, 1417–1426.

    Article  Google Scholar 

  33. Makino, S., et al., 1999, Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103, 697–705.

    Article  Google Scholar 

  34. Jackson, K.A., et al., 2001, Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107, 1395–1402.

    Article  Google Scholar 

  35. Henon, P., 2003, Human embryonic or adult stem cells: an overview on ethics and perspectives for tissue engineering. In Tissue Engineering, Stem Cells and Gene Therapies, (Y.M. Elcin, Ed.), AEMB Series, Vol. 534, Kluwer Academic-Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, pp. 27–46.

    Chapter  Google Scholar 

  36. Hamano, K., Nishida, M., Hirata, K. et al., 2001, Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J 65, 845–847.

    Article  Google Scholar 

  37. Strauer, B.E., Brehm, M., Zeus, T. et al., 2002, Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913–1918.

    Article  Google Scholar 

  38. Pittenger, M.F., and Marshak, D.R., 2001, Mesenchymal stem cells of human adult bone marrow, in Stem Cell Biology, Ed. D.R. Marshak, pp. 349–373, Cold Spring Harbor Laboratory Press, Woodbury, New York.

    Google Scholar 

  39. Kim, C.-H., Cheng, S.-L., and Kim, G.S., 1999, Effects of dexamethasone on proliferation, activity and cytokine secretion of normal human bone marrow stromal cells:possible mechanisms of glucocorticoid-induced bone loss. JEndocrin 162, 371–379.

    Article  Google Scholar 

  40. Mackay, A.M., Beck, S.C., Murphy, J.M., Barry, F.P., Chichester, C.O., and Pittenger, M.F., 1998, Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4, 415–428.

    Article  Google Scholar 

  41. Pittenger, M.F., 1998, Adipogenic differentiation of human mesenchymal stem cells. U.S. Patent #5,827,740.

    Google Scholar 

  42. Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L. et al., 2002, Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49.

    Article  Google Scholar 

  43. Reyes, M., Dudek, B., Jahagirdar, B., Koodie, K., Marker, Ph., and Verfaillie, C.M., 2002, Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest. 109, 337–346.

    Google Scholar 

  44. Schwartz, R.E., Reyes, M., Koodie, L. et al., 2002, Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin.Invest. 109, 1291–1302.

    Google Scholar 

  45. Orkin, S.H., and Mormison, S.J., 2002, Stem-cell competition. Nature 418, 25–27.

    Article  Google Scholar 

  46. Elcin, Y.M., 1998, Tissue engineering of liver, review. In Biomedical Science and Technology: Recent Developments In The Pharmaceutical and Medical Sciences, (A. A. Hincal and H. S. Ka., Eds.), Plenum Press, New York and London. no. 109–116.

    Google Scholar 

  47. Elcin, Y.M., 2004, Tissue engineering of the liver, review. In Biodegradable Systems in Medical Functions: Design, Processing, Testing and Applications, (R. Reis and J. S. Roman, Eds.), CRC Press, Boca Raton, in press.

    Google Scholar 

  48. Elcin, Y.M., Dixit, V., and Gitnick, G., 1998, Hepatocyte attachment on modified chitosan membranes: In vitro evaluation for the development of liver organoids. Artif Organs 22, 837–846.

    Article  Google Scholar 

  49. Elcin, Y.M.., Dixit, V., Lewin K., and Gitnick, G., 1999, Xenotransplantation of fetal porcine hepatocytes in rats using a tissue engineering approach. Artif Organs 23(2), 146–152.

    Article  Google Scholar 

  50. Dixit, V, and Elçin, Y.M., 2003, Liver tissue engineering: successes and limitations. In Tissue Engineering, Stem Cells and Gene Therapies, (Y.M. Elçin, Ed.), AEMB Series, Vol. 534, Kluwer Academic-Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, pp. 57–68.

    Chapter  Google Scholar 

  51. Grompe, M., 1999, Therapeutic liver repopulation for the treatment of metabolic liver diseases. Hum Cell 12, 171–178.

    Google Scholar 

  52. Vessey, C.J., and Hall, P.D.L.M., 2001, Hepatic stem cells: a review. Pathology 33 (2), 130–148.

    Google Scholar 

  53. Susick, R., et al., 2001, Hepatic progenitors and strategies for liver cell therapies. Ann NY Acad Sci 944, 398–413.

    Article  Google Scholar 

  54. Lazaro, A., et al., 1998, Generation of hepatocytes from oval cell precursors in culture. Cancer Res 58, 5514–5519.

    Google Scholar 

  55. Sherley, J.L., 2002, Adult stem cell differentiation: what does it mean? Proc Iind J EMBS/BMES Conf, Houston, TX, USA, pp.741–742.

    Google Scholar 

  56. Lee, H. S., Crane, G.G., Merok, J.R., et al., 2003, Clonal expansion of rat hepatic stem cell lines by supression of asymmetric cell kinetics (SACK). Biotech Bioeng 83 (7), 760–771.

    Article  Google Scholar 

  57. Bretzel, R.G., 2003, Pancreatic islet and stem cell transplantation in diabetes mellitus: results and perspectives. In Tissue Engineering, Stem Cells and Gene Therapies, (Y.M. Elçin, Ed.), AEMB Series, Vol. 534, Kluwer Academic-Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, pp. 69–96.

    Chapter  Google Scholar 

  58. Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., and McKay, R., 2001, Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394.

    Article  Google Scholar 

  59. Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K.L., and Tzuckerman, M., 2001, Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697.

    Article  Google Scholar 

  60. Zulewski, H., Abraham, E.J., Gerlach, M.J., Daniel, P.B., Moritz, W., Muller, B., Vallejo, M., Thomas, M.K., and Habener, J.F., 2001, Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533.

    Article  Google Scholar 

  61. Ramiya, V.K., Maraist, M., Arfors, K.E., Schatz, D.A., Peck, A.B., and Cornelius, J.G., 2000, Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6, 278–282.

    Article  Google Scholar 

  62. Bonner-Weir, S., Taneja, M., Weir, G.C., Tatarkiewicz, K., Song, K.H., Sharma, A., and O-Neill, J.J., 2000, In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl Acad Sci USA 97, 7999–8004.

    Article  Google Scholar 

  63. Soria, B., Andreu, E., Bemna, G., Fuentes, E., Gil, A., Leon-Quinto, T., Martin, F., Montanya, E., Nadal, A., Reig, J.A., Ripoll, C., Roche, E., Sanchez-Andres, and J.V., Segura, J., 2000, Engineering pancreatic islets. Eur J Physiol 440, 1–18.

    Google Scholar 

  64. Cheung, A.T., Dayanandan, B., Lewis, J.T., Korbutt, G.S., Rajotte, R.V., Bryer-Ash, M., Boylan, M.O., Wolfe, M.M., and Kieffer, T.J., 2000, Glucose-dependent insulin release from genetically engineered K cells. Science 290, 1959–1962.

    Article  Google Scholar 

  65. Lee, H.C., Kim, S.J., Kim, K.S., Shin, H.C., and Yoon, J.W., 2000, Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue. Nature 408, 483–488.

    Article  Google Scholar 

  66. Shaw, J.A.M., Delday, M.I., Hart, A.W., and Docherty, K., 2002, Secretion of bioactive human insulin following plasmid-mediated gene transfer to non-neuroendocrine cell lines, primary cultures and rat skeletal muscle in vivo. JEndocrinol 172, 653–672.

    Google Scholar 

  67. Riu, E., Mas, A., Ferre, T., Pujol, A., Gros, L., Otaegui, P., Montoliu, L., and Bosch, F., 2002, Counteraction of type 1 diabetic alterations by engineering skeletal muscle to produce insulin: insights from transgenic mice. Diabetes 51, 704–711.

    Article  Google Scholar 

  68. Ferber, S., Halkin, A., Cohen, H., Ber, I., Einav, Y., Goldberg, I., Barshack, I., Seijfers, R., Kopolovic, J., Kaiser, N., and Karasik, A., 2000, Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocininduced hyperglycemia. Nat Med 6, 568–572.

    Article  Google Scholar 

  69. Kahn, A., 2000, Converting hepatocytes to β3-cells — a new approach for diabetes? Nat Med 6, 505–506.

    Article  Google Scholar 

  70. Temple, S., 2001, The development of neural stem cells. Nature 414, 112–117.

    Article  Google Scholar 

  71. Temple, S., 1989, Division and differentiation of isolated CNS blast cells in microculture. Nature 340, 471–473.

    Article  Google Scholar 

  72. Cattaneo, E., and McKay, R., 1990, Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347, 762–765.

    Article  Google Scholar 

  73. Stemple, D.L., and Anderson, D.J., 1992, Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71, 973–985.

    Article  Google Scholar 

  74. Reynolds, B.A., and Weiss, S., 1992, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    Article  Google Scholar 

  75. McKay, R., 1997, Stem cells in the central nervous system. Science 276, 1707–1710.

    Google Scholar 

  76. Rao, M.S., 1999, Multipotent and restricted precursors in the central nervous system. Anat Rec 257, 137–148.

    Article  Google Scholar 

  77. Gage, F.H., 2000, Mammalian neural stem cells. Science 287, 1433–1438.

    Article  Google Scholar 

  78. Weissman, I.L., 2000, Stem cells: units of development, units of regeneration, and units of evolution. Cell 100, 157–168.

    Article  Google Scholar 

  79. Bianco, P., and Robey, P.G., 2001, Stem cells in tissue engineering. Nature 414, 118–121.

    Article  Google Scholar 

  80. Wilkins, L.M., Watson, S.R., Prosky, S.J., Meunier, S.F., and Parenteau, N.L., 1994, Development of a bilayered living skin construct for clinical applications. Biotechnol Bioeng 43, 747–756.

    Article  Google Scholar 

  81. Rodriguez, H., Jaruga, P., Birincioglu, M., Barker, P.E., O Connell, and Dizdaroglu, M., 2003, Oxidative DNA damage biomarkers used in tissue engineered skin. In Tissue Engineering, Stem Cells and Gene Therapies, (Y.M. Elçin, Ed.), AEMB Series, Vol. 534, Kluwer Academic-Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, pp. 129–135.

    Chapter  Google Scholar 

  82. Gentzkow, G.D., Iwasaki, S.D., Hershon, K.S., Mengel, M., Prendergast, J.J., Ricotta, J.J., Steed, D.P., and Lipkin, S., 1996, Use of dermagraft, a cultured human dermis, to treat diabetic foot ulcers. Diabetes Care 19, 350–354.

    Article  Google Scholar 

  83. Sabolinski, M.L., Alvarez, O., Auletta, M., Mulder, G., and Parenteau, N.L., 1996, Cultured skin as a ’smart material’ for healing wounds: experience in venous ulcers. Biomaterials 17, 311–320.

    Article  Google Scholar 

  84. Pellegrini, G., Ranno, R., Stracuzzi, G., Bondanza, S., Guerra, L., Zambruno, G., Micali, G., and De Luca, M., 1999, The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 68, 868–879.

    Article  Google Scholar 

  85. Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S.M., Mukhachev, V., Lavroukov, A., Kon, E., and Marcacci, M., 2001, Repair of large bone defects with the use of autologous bone marrow stromal cells. NEng JMed 344 (5), 385–386.

    Article  Google Scholar 

  86. Pellegrini, G., et al., 1997, Long-term restoration of damaged corneal surfaces with autologous cultivated comneal epithelium. Lancet 349, 990–993.

    Article  Google Scholar 

  87. Tsai, R.J., Li, L.M., and Chen, J.K., 2000, Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. NEngl JMed 343, 86–93.

    Article  Google Scholar 

  88. Lysaght, M.L., Frydel, B., Gentile, F., Emerich, D., and Winn, S., 1994, Recent progress in immunoisolated cell therapy, J Cell Biochem 56, 196–203.

    Article  Google Scholar 

  89. Elçin, A.E., Elçin, Y.M., and Pappas, G.D., 1998, Neural tissue engineering: adrenal chromaffin cell attachment and viability on chitosan scaffolds. Neurol Res 20, 648–654.

    Google Scholar 

  90. Elçin, Y.M., Elçin, A.E., and Pappas, G.D., 2003, Functional and morphological characteristics of bovine adrenal chromaffin cells on macroporous poly(DL-lactide-coglycolide) scaffolds. Tissue Eng 9 (5), 1047–1056.

    Article  Google Scholar 

  91. Björklund, A., 2000, Cell replacement strategies for neurodegenerative disorders. Novartis Found Symp 231, 7–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Elçin, Y.M. (2004). Stem Cells and Tissue Engineering. In: Hasirci, N., Hasirci, V. (eds) Biomaterials. Advances in Experimental Medicine and Biology, vol 553. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48584-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48584-8_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0988-9

  • Online ISBN: 978-0-306-48584-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics